
Anytime Local Search for Distributed Constraint Optimization ∗

Roie Zivan
Department of Industrial Engineering and Management

Ben-Gurion University of the Negev
Beer-Sheva, 84105, Israel

zivanr@bgu.ac.il

Abstract

Most former studies of Distributed Constraint Optimization
Problems (DisCOPs) search considered only complete search
algorithms, which are practical only for relatively small prob-
lems. Distributed local search algorithms can be used for
solving DisCOPs. However, because of the differences be-
tween the global evaluation of a system’s state and the pri-
vate evaluation of states by agents, agents are unaware of the
global best state which is explored by the algorithm. Previous
attempts to use local search algorithms for solving DisCOPs
reported the state held by the system at the termination of the
algorithm, which was not necessarily the best state explored.
A general framework for implementing distributed local
search algorithms for DisCOPs is proposed. The proposed
framework makes use of aBFS-tree in order to accumu-
late the costs of the system’s state in its different steps and
to propagate the detection of a new best step when it is found.
The resulting framework enhances local search algorithms for
DisCOPs with theanytimeproperty. The proposed frame-
work does not require additional network load. Agents are
required to hold a small (linear) additional space (beside the
requirements of the algorithm in use). The proposed frame-
work preserves privacy at a higher level than complete Dis-
COP algorithms which make use of a pseudo-tree (ADOPT ,
DPOP ).

Introduction
The Distributed Constraint Optimization Problem (DisCOP)
is a general model for distributed problem solving that has a
wide range of applications in Multi-Agent Systems and has
generated significant interest from researchers (Mailer and
Lesser 2004; Modi et al. 2005; Petcu and Faltings 2005;
Zhang et al. 2005).

A number of complete algorithms were proposed in the
last few years for solving DisCOPs (Gershman, Meisels, and
Zivan 2006; Modi et al. 2005; Petcu and Faltings 2005).
While the completeness of these algorithms is an advantage
in the sense that they guarantee to report the optimal solu-
tion, this is also a drawback since in order to validate that
an acquired solution is optimal they must traverse the entire
∗The research was supported by the Lynn and William Frankel

Center for Computer Science, and by the Paul Ivanier Center for
Robotics.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search space. This drawback limits the use of these algo-
rithms to relatively small problems.

In the case of centralized optimization problems, local
search techniques are used when the problems are too large
to perform a complete search. Traditionally, local search al-
gorithms maintain a complete assignment for the problem
and use a goal function in order to evaluate this assignment.
Different methods which balance between exploration and
exploitation are used to improve the current assignment of
the algorithm (Schaerf 1999). An important feature of most
local search algorithms is that they hold the best assignment
that was found throughout the search. This makes themany-
time algorithms, i.e., the quality of the solution can only
increase or remain the same if more iterations of the algo-
rithm are performed (Zilberstein 1996). This feature can-
not be applied in a distributed environment where agents are
only aware of the cost of their own assignment (and maybe
their neighbors too) but no one actually knows when a good
global solution is obtained.

In (Maheswaran, Pearce, and Tambe 2004; Pearce and
Tambe 2007), a new approach was presented to perform lo-
cal search on DisCOPs in which agents can form coalitions
of the size ofk. By changing in each iteration the maxi-
mal positive gain ak size coalition proposes, the algorithm
reaches ak optimalstate when no further positive gain of-
fers are proposed (Pearce and Tambe 2007). In this solution
the exploration of the search space by the algorithm is de-
pendent on the size of the allowed coalitionsk. Since the
quality of the state held by the agents is monotonically im-
proving, it can be consideredanytime. However, it does not
offer classicalanytimelocal search in which the current state
of the system can deteriorate in order to achieve exploration
while the reported solution monotonically improves.

Several local search algorithms were proposed for Dis-
tributed ConstraintsSatisfactionproblems. Most of them
apply a synchronous framework which in each synchronous
step of the algorithm agents propagate their assignments
to all their neighbors in the constraint graph, collect all
the assignments of their neighbors, and decide whether
to change their assignment (Yokoo and Hirayama 2000;
Zhang et al. 2005).

Such local search algorithms are applicable for DisCOPs.
However, they cannot report the best solution they traverse
(i.e., they are notanytimealgorithms (Zilberstein 1996)).



The reason is that in contrast to a satisfaction scenario where
in the global optimal state all agents are also in a local (e.g.,
private) optimal state, in a distributed optimization scenario
agents might have a local (private) assignment to their vari-
ables which is not optimal but the system is in an optimal
(global) state.

In (Zhang et al. 2005), distributed local search algorithms
(DSA andDBA) were evaluated solving sensor network
DisCOPs. Apparently these algorithms perform well on this
application even without a pureanytimeproperty. The algo-
rithms were compared by evaluating the state held by agents
at the end of the run. Such evaluation limits the chances
of local search algorithms which implement an exploring
heuristic to be successful.

In order to implement localanytimesearch algorithms
which follow the same general structure ofDSA andDBA
for Distributed Optimization problems, the global result of
every synchronous iteration must be calculated and the best
solution must be stored. A trivial solution would be to cen-
tralize in every iteration the costs calculated by all agents to
a single agent which will inform the other agents each time
a solution which improves the results on all previous solu-
tions is obtained. However, this method has drawbacks both
in the increase in the number of messages and in the viola-
tion of privacy caused from the need to inform a single agent
(not necessarily a neighbor of all agents) of the quality of all
other agents’ states in each of the iterations of the algorithm.

The present paper proposes a general framework for en-
hancing local search algorithms which follow the general
synchronous structure ofDSA andDBA and solve Dis-
COPs with theanytimeproperty. In the proposed frame-
work the quality of each state is accumulated via aBreadth
First Search tree(BFS-tree) structure. Agents receive the
information about the quality of the recent states of the al-
gorithm from theirchildren in theBFS-tree, calculate the
resulting quality including their own contribution according
to the goal function, and pass it to their parents. Theroot
agentmakes the final calculation of the cost for each state
and propagates down the tree the index number of the most
successful state. When the search is terminated, all agents
hold the assignment of the best state according to the global
goal function.

In order to produce the best state out ofm steps, the al-
gorithm must runm + (2 ∗ h) synchronous steps whereh
is the height of the tree used. Since the only requirement of
the tree is to maintain a parent route from every agent to the
root agent, the tree can be aBFS-tree and its heighth is
expected to be small. The proposed framework does not re-
quire agents to send any messages beside the messages sent
by the original algorithm. The space requirements for each
agent areO(h). In terms of privacy, the proposed frame-
work preserves a higher level of privacy than state-of-the-art
algorithms for solving DisCOPs which use a pseudo-tree

DSA
1. value← ChooseRandomValue()
2. while (no termination condition is met)
3. send value to neighbors
4. collect neighbors’ values
5. if (ReplacementDecision())
6. select and assign the next value

Figure 1: Standard DSA.

Local Search for DisCOPs
1 The general design of local search algorithms for Dis-
tributed Constraint Problems is synchronous. In each step of
the algorithm an agent sends its assignment to all its neigh-
bors in the constraint network and receives the assignment of
all its neighbors. For lack of space we only present one algo-
rithm that applies to this general framework, theDistributed
Stochastic Algorithm(DSA). It is presented following the
recent version of (Zhang et al. 2005).2

The basic idea of theDSA algorithm is simple. After an
initial step in which agents pick some value for their variable
(random according to (Zhang et al. 2005)), agents perform a
sequence of steps until some termination condition is met. In
each step, an agent sends its value assignment to its neigh-
bors in the constraints graph and receives the assignments
of its neighbors.3 After collecting the assignments of all its
neighbors, an agent decides whether to keep its value assign-
ment or to change it using a stochastic strategy (see (Zhang
et al. 2005) for details on the possible strategies and the dif-
ference in the resulting performance). A sketch ofDSA is
presented in Figure 1.

Anytime framework
Local search algorithms combine exploration and exploita-
tion properties in order to converge to local minimas, and
escape from them in order to explore other parts of the
search space. When a centralized constraint optimization
local search algorithm is performed, the quality of the states
of the algorithm are completely known and therefore there
is no difficulty in holding the best state which was explored.
In a distributed constraint optimization problem, agents are
only aware of their own private state (the violated constraints
which they are involved in and their costs) and, thus, a state
which can seem to have high quality to a single agent might
be of low global quality and vise versa.

We propose a framework that will enhance DisCOP local
search algorithms with theanytimeproperty. In the proposed

1A detailed description of Distributed Constraint Optimization
was left out for lack of space. A detailed description can be found
in (Gershman, Meisels, and Zivan 2006). We assume that agents
are aware only of their own topology (constraints that they are in-
volved in personally and privately hold).

2In our description we consider an improvement a decrease in
the number of violated constraints (as in Max-CSPs).

3In this paper we follow the general definition of a DisCOP and
a DisCSP which does not include a synchronization mechanism. If
such a mechanism exists, agents inDSA can send value messages
only in steps in which they change their assignments.



DSA DisCOP
1. height← height in theBFS- tree
2. dist← distance from root
3. best← null
4. best index← null
5. current step← 0
6. if (root)
7. best cost←∞
8. value current← ChooseRandomValue()
9. while (current step < (m+ dist+ height))
10. send value andcost i to parent
11. send value to non tree neighbors
12. send value andbest index to children
13. collect neighbors’ values
14. cost i← CalculateStepCost(current step− height)
15. if (root)
16. if (cost i < best cost)
17. best cost← cost i
18. best← value i
19. best index← i
20. if (message from parent includes a newbest index j)
21. best← value j
22. best index← j
23. if (ReplacementDecision())
24. select and assign the next value
25. deletevalue (current step− (2 ∗ dist))
26. delete cost of step(current step− height)
27. current step+ +
28. for (1 to dist+ height)
29. receive message from parent
30. if (message from parent includes a newbest index j)
31. best← value j
32. best index← j
33. sendbest index to children

Figure 2: DSA in theALS DisCOP framework.

Anytime Local Searchframework,ALS DisCOP , a tree is
used as inADOPT (Modi et al. 2005) andDPOP (Petcu
and Faltings 2005). In contrast toADOPT andDPOP
that require the use of a pseudo-tree, the only requirement in
ALS DisCOP is that every agent has a parent route to the
root agent. Thus, aBreadth First Search(BFS) tree on the
constraints graph can be used. TheBFS-tree structure is
used in order to accumulate the cost of agents’ states in the
different steps during the execution of the algorithm. Each
agent calculates the cost of the sub-tree it is a root of in the
BFS-tree and passes it to its parent. The root agent calcu-
lates the complete cost of each state and if it is better than
the best state found so far, propagates its index to the rest of
the agents. Each agentAi is required to hold its assignments
in the last2∗disti steps wheredisti is the length of the route
of parents in theBFS-tree fromAi to the root agent and is
bounded by the height of theBFS-tree (h).

In each step of the algorithm an agent collects from its
children in theBFS-tree the calculation of the cost of the
sub-tree of which they are the root. When it receives the
costs for a stepj from all its children, it adds its own cost
for the state in stepj and sends the result to its parent. When
the root agent receives the calculations of the cost of stepi
from all its children, it calculates the global state cost. If it

is better than the best state found so far, in the next step it
will inform all its children that the state in stepj is the new
best state. Agents which are informed of the new best step
store their assignment in that step as the best assignment and
pass the information about the best index to their children in
the next step. After every synchronous step the agents can
delete the information stored about any of the steps which
were not the best and are not of the last2 ∗dist steps. When
the algorithm is terminated, the agents must perform another
h steps (again,h is the height of theBFS-tree) in which
they do not replace their assignment to make sure that all
the agents are aware of the same index of the best step.

The code forDSA in theALS DisCOP framework is
presented in Figure 24. The structure of the framework
is homogeneous for all algorithms with a distributed syn-
chronous local search general structure (such asDSA and
DBA). It is interleaved in the algorithm execution as fol-
lows:
1. In the initialization phase, besides choosing a random

value for the variable, agents initialize the parameters
which are used by the framework. The root initializes an
extra integer variable to hold the cost of the best step (lines
1-7 in Figure 2).

2. In order to get the best out ofm steps of the algorithm,
m+ h steps are performed (notice that for each agent the
sum ofheight anddist is equal toh which is the height
of the globalBFS-tree). This is required so all the infor-
mation needed for the root agent to calculate the cost of
them steps will reach it (line 9 in Figure 2).

3. After values are exchanged, each agent calculates the cost
of the state according to its height. An agent with height
hi calculates the cost of the state in which its sub-tree
was inhi steps ago. The root agent checks if the cost it
calculated is smaller than the best cost found so far and if
so saves its information. All other agents check if the best
index received from their parent is new. If so they save
the information (index and assignment) of the step with
the corresponding index (lines 16-22 in Figure 2).

4. Before the step is over, the agent deletes the information
that has become redundant. This includes the information
on the cost which it passed to its parent on this step and the
assignment of the step which its index should have been
received on this step in case it was found to be better than
previous steps by the root agent (lines 25,26 in Figure 2).

5. On the next step, the value message an agent sends to its
parent will include the cost calculation it had performed
in this step and the messages to its children will include
the index of the best step it knows of.

6. When the termination condition of the algorithm is met,
the agents perform additionalh steps in which only the
best index is propagated down the tree. This way, if the
last step cost calculated by the root agent is found to be
best, its propagation to all agents is completed. Further-
more, by performing these steps, the possibility that dif-
ferent agents hold assignments of their best steps which
4We assume the existence of a BFS tree when the algorithm

begins.



belong to different steps is prevented (lines 28-33 in Fig-
ure 2).

Properties of ALS DisCOP
ALS DisCOP is a framework for implementing local
search algorithms for DisCOPs. Regardless of the algorithm
being used, theALS DisCOP framework offers properties
which ensure the preservance of the algorithm’s behavior.

Anytime property
The main goal of theALS DisCOP framework is to en-
hance a distributed local search algorithm with theanytime
property (i.e. that the cost of the solution held by the algo-
rithm at the end of the run would monotonically decrease if
the algorithm is allowed to run for additional iterations (Zil-
berstein 1996)). In order to prove thatALS DisCOP is an
anytimeframework for distributed local search algorithms,
we first prove the following Lemma:

Lemma 1 When the algorithm terminates, all the assign-
ments of the best state held by all the agents in the system
are assignments they held in the same step (in other words
thebest index of all agents is equal).

proof: The proof for this Lemma derives directly from the
last part of the framework which includesh steps in which
messages including only thebest index are passed. Since
no newbest index is found by the root in these steps andh
steps are enough for all the agents in theBFS-tree to receive
a newbest index, then even if abest index was found in
the last (standard) step of the algorithm its propagation is
completed.�

Next, we prove that at the end of the run ofm + h itera-
tions (synchronous steps of the algorithm in the framework),
the index of the step with the best state which was held by
the system in them first steps of the algorithm is held by the
root agent. To this end we present the following Lemma (the
simple proof was left out for lack of space):

Lemma 2 At the i + h step, the root agent holds all the
needed information for calculating the quality of statei.

The anytimeproperty of theALS DisCOP framework
derives directly from the Lemmas 1 and 2.h steps after
each step is performed, the root agent holds the information
needed to evaluate its quality and can propagate its index
to all other agents in case it is the best. Since we require
that agents hold the value assignments of the last2 ∗ dist
(dist is the length in a rout of parents of an agent from the
root which is at mosth) steps they can get the update on the
index of the best step before they delete the relevant assign-
ment and hold it until they receive another update. Thus,
afterm+ h steps, the root agent holds the index of the step
with the best state among the firstm steps and according to
Lemma 1, at the end of the algorithm run, all agents hold the
value assignment of the step which was found by the root
to be the best. If the algorithm is run fork more steps (the
termination condition is met afterm + k + h steps), in the
k steps performed after the firstm steps, either a better so-
lution is found or the same solution which was found best in
the firstm steps is reported.�

Performance analysis

Distributed algorithms are commonly measured in terms of
time for completion and network load (Lynch 1997). When
considering a local search algorithm for DisCOPs, since it
is not complete and the agents cannot determine that they
are in an optimal state, there is no point in measuring time.
We note that in the proposed framework, in order to get
the best state amongm steps the algorithm needs to run
for m + (2 ∗ h) steps. However, the tree which is used by
ALS DisCOP has different requirements than the pseudo-
trees which are used by complete algorithms (likeADOPT
andDPOP ). In a pseudo-tree which is used in complete
algorithms, constrained agents must be on the same par-
ent route (in every binary constraint, one of the constrained
agents is an ancestor of the other). This requirement makes
the pseudo-tree less effective when the constraint graph is
dense. In contrast, the only requirement inALS DisCOP
is that every agent has a parent route to the root agent. Thus,
a Breadth First Search(BFS) tree can be used. Since a
BFS-tree includes the shortest route from each node to the
root, the height of the resulting tree (especially when the
constraint graph is dense) is expected to be small.

In terms of network load, theALS DisCOP framework
does not require any additional messages. In standard local
search algorithms (such asDSA andDBA), agents at each
step send at least one message to each of their neighbors.
TheALS DisCOP framework does not require more. The
additional information that agents add to messages is con-
stant (a single cost of a step or a best index).

In terms of space, an agenti is required to hold the value
assignments of the last2 ∗ dist steps (againdist is the dis-
tance in tree arcs of an agent from the root) and to hold the
cost of the lastheight states (whereheight is the height of
the agent in theBFS-tree). This results in anO(h) addi-
tional space requirement (linear in the worst case) for each
agent.

Privacy of ALS DisCOP

When a complete algorithm is being performed, agents must
be able to announce that parts of the search space were al-
ready scanned and do not include a better solution than the
best solution which was already found by the algorithm.
This is done by declaring lower bound costs on partial as-
signments (Nogoods). While this report of costs of partial
assignments is necessary for the algorithm’s completeness, it
is also a drawback when it comes to privacy. In a naive algo-
rithm like synchronousB&B, agents are required to reveal
their assignments to non-neighboring agents. In the case of
algorithms which exploit the structure of the constraint net-
work, such asADOPT andDPOP , agents report costs
with respect to their contexts, which means, for example in
ADOPT , that a parent of a leaf agent is informed not only
of the lowest cost of any of the leaf’s possible value assign-
ments but of the assignments of agents with which it is con-
strained and caused this cost.

In a local search algorithm, partial assignments can be re-
visited and therefore a cost of a state must be reported, but
the context which caused this cost can remain concealed.



The trade-off that is commonly considered between com-
plete search and local search is time versus completeness. It
turns out that there is another trade-off to consider, which is
the privacy loss required by a complete algorithm and is not
required in a local search algorithm.

In addition to the information which the local search
algorithm requires agents to exchange between them,
ALS DisCOP requires that each agent will pass the cost of
a state in the sub-tree of which it is the root. As in other algo-
rithms which use a tree (asADOPT andDPOP ), the main
problem inALS DisCOP is with the information passed
by leafs in the tree to their parents (Greenstadt, Grosz, and
Smith 2007).

When a non-leaf agentAj passes the cost of its sub-tree
to its parent, the parent does not know how many children
Aj has and the contribution of each of these agents to the
reported cost. On the other hand, when a leaf agent reports
a cost, its parent knows that it is the cost of a single agent
(the leaf itself). However, agents are not aware of the sys-
tem’s topology except for their own neighbors. So in fact,
even though the parent of a leaf receives its cost in every
step of the algorithm, the parent does not know how many
neighbors of its leaf child has in the constraint network and
which constraints were violated. Thus, the privacy violation
is minor.

Experimental Evaluation
In order to emphasize the impact of theALS DisCOP
framework on distributed local search, a set of experiments
that demonstrate the effect of the proposed framework on
theDSA algorithm is presented.

The experiments were performed on realisticMeet-
ing Scheduling ProblemsMSPs (Gent and Walsh 1999;
Meisels and Lavee 2004; Modi and Veloso 2004). The
agents’ goal in aMSP is to schedule meetings among them.
Each meeting which is scheduled is assigned a utility ac-
cording to the participating agents’ preferences on the time-
slot it was scheduled in. The experiments setup included
MSPs with 20 agents and 20 meetings. There were 12
time slots available (3 days, 4 time slots in each day). In
each meeting there are 5 participating agents. 50 different
problems were generated in which agents were assigned ran-
domly to meetings.5

Four versions ofDSAwere implemented. In each version
the probability to change an already set time-slot of a meet-
ing was different. This parameter (p explore) determined the
level of the exploration property of the algorithm. It enables
agents to perform steps which deteriorate their current util-
ity (in contrast to previous versions of DSA (Zhang et al.
2005)).

Each of the 50 problems was solved by each of the algo-
rithm’s versions 20 times. In each time the algorithm per-
formed 1000 steps. For each run of the algorithm we cal-
culated the sum of all meeting utilities. The maximal utility

5Our paper which describes in details the representation of an
MSP problem as a DisCOP was submitted to the DCR-2008
workshop. We will add the reference in the final version of the
paper.

Figure 3: Step utility vs. anytime utility.

of a schedule (if all agents got all their meeting scheduled
according to their preferences) is 25000. The results pre-
sented in Table 1 represent the average sum of utilities of all
1000 runs for each of the versions of the algorithm with and
without using the anytime framework.

Notice that the meeting scheduling problem is a max-
imization problem (it is concerned with maximizing utili-
ties and not with minimizing costs). Although our presen-
tation of theALS DisCOP framework was with accor-
dance to the classic minimization DisCOP (Yokoo and Hi-
rayama 2000; Modi et al. 2005; Petcu and Faltings 2005;
Gershman, Meisels, and Zivan 2006), the framework is com-
patible (with very small changes) for maximization prob-
lems as well.

p explore state utility anytime utility

0 18387 18387
0.0001 18381 18523
0.0005 18196 18851
0.001 17672 189161
0.005 13170 17642

Table 1: DSA with different level of exploration solving
MSPs

As expected, there is a correlation in the results presented
in Table 1 between the quality of the state at the end of the
search and the exploration probability factor. The higher the
probability for exploration, the lower the quality of the final
state. However, when the anytime framework is used, the
algorithm reports the state with the highest quality which
was found. In this case, the quality of the reported state
increases with the increment of the exploration probability
up to some point and then drops (this phase transition which
occurs for high level of exploration inDSA was reported
in (Zhang et al. 2005)). The difference between the quality
of the best (anytime) reported state and the quality of the
final state monotonically increases in correlation with the
increment of the exploration factor.

In order to demonstrate the behavior of the algorithm
which leads to the results in Table 1 we present the change
in the utility in a single run of the algorithm. Figure 3



presents the difference between the state utility at each step
and the anytime utility at each step of a single run of the
DSA algorithm with the most successful exploration proba-
bility (p explore= 0.001). It is clear that the exploration of
the algorithm enables an improvement in the resulting util-
ity. Furthermore, the anytime property eliminates the depen-
dency on the quality of the last state performed.

Conclusions
DisCOPs are hard optimization problems which require ex-
haustive search. Therefore, complete search algorithms are
limited for solving relatively small problems.

Distributed local search algorithms were proposed for
Distributed CSPs and were applied for DisCOPs (Zhang et
al. 2005). However, these algorithms failed to report the
best state traversed by the algorithm.

In order to enhance local search algorithms for DisCOPs
with theanytimeproperty, a general framework for perform-
ing distributed local search algorithms in DisCOPs was pro-
posed in this paper. In the proposed framework, agents use
aBFS-tree structure in order to accumulate the costs of a
state of the system to the root agent which compares the cost
of each state with the cost of the best state found so far and
propagates the index of a new best state, once it is found, to
all other agents. At the end of the run, the agents hold the
best state which was traversed by the algorithm.

Apart from a small number of idle steps at the end of
the run of the algorithm (two times the height of theBFS-
tree), the framework does not require any additional slow-
down in the performance of the algorithm. In contrast to
complete algorithms which use a pseudo-tree, the tree used
in ALS DisCOP can be aBreadth First Search(BFS)
tree. Thus, the height of the tree is expected to be small.
In terms of network load, the only messages used in the
ALS DisCOP framework are the algorithm’s messages
(i.e., no additional messages are required by the framework).
Agents are required to use small (linear in the worst case)
additional space. In terms of privacy,ALS DisCOP pre-
serves a higher level of privacy than complete DisCOP al-
gorithms which use a pseudo-tree, since an agent is not
required to reveal to its neighbor with which of the other
agents it is constrained (who are its other neighbors in the
constraints graph).

Our experimental study demonstrates the potential of
distributed anytime local search algorithms which imple-
ment an exploration heuristic. We hope that this paper will
encourage studies of distributed local search algorithms for
DisCOPs which will combine stochastic and systematic
methods for exploration and exploit the special properties
of a distributed optimization problem.

Acknowledgment: I thank Alon Grubshtein for produc-
ing the experiments presented in this paper.

References
Gent, I., and Walsh, T. 1999. Csplib: a benchmark library
for constraints. Technical report, Technical report APES-
09-1999. Available from http://csplib.cs.strath.ac.uk/. A

shorter version appears in the Proceedings of the 5th In-
ternational Conference on Principles and Practices of Con-
straint Programming (CP-99).
Gershman, A.; Meisels, A.; and Zivan, R. 2006. Asyn-
chronous forward-bounding for distributed constraints op-
timization. InProc. ECAI-06, 103–107.
Greenstadt, R.; Grosz, B. J.; and Smith, M. D. 2007.
Ssdpop: Improving the privacy of dcop with secret shar-
ing, distributed constraint reasoning workshop (dcr), prov-
idence, rhode island, september 2007. InDistributed Con-
straint Reasoning Workshop (DCR), CP-07.
Lynch, N. A. 1997.Distributed Algorithms. Morgan Kauf-
mann Series.
Maheswaran, R. T.; Pearce, J. P.; and Tambe, M. 2004.
Distributed algorithms for dcop: A graphical-game-based
approach. InProc. Parallel and Distributed Computing
Systems PDCS), 432–439.
Mailer, R., and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In Proc. AAMAS-2004, 438–445.
Meisels, A., and Lavee, O. 2004. Using additional informa-
tion in discsp search. InProc. 5th workshop on distributed
constraints reasoning, DCR-04.
Modi, J., and Veloso, M. 2004. Multiagent meet-
ing scheduling with rescheduling. InProc. of the Fifth
Workshop on Distributed Constraint Reasoning (DCR), CP
2004.
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005.
Adopt: asynchronous distributed constraints optimization
with quality guarantees. Artificial Intelligence 161:1-
2:149–180.
Pearce, J. P., and Tambe, M. 2007. Quality guarantees on
k-optimal solutions for distributed constraint optimization
problems. InIJCAI.
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. InIJCAI, 266–271.
Schaerf, A. 1999. Local search techniques for large high-
school timetabling problems.IEEE Transactions on Sys-
tems, Man, and Cybernetics— Part A: Systems and Hu-
mans29(4):368–377.
Yokoo, M., and Hirayama, K. 2000.Distributed Constraint
Satisfaction Problems. Springer Verlag.
Zhang, W.; Xing, Z.; Wang, G.; and Wittenburg, L.
2005. Distributed stochastic search and distributed break-
out: properties, comparishon and applications to con-
straints optimization problems in sensor networks.Arti-
ficial Intelligence161:1-2:55–88.
Zilberstein, S. 1996. Using anytime algorithms in intelli-
gent systems.AI Magazine17(3):73–83.


