
Message delay and DisCSP search algorithms

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) are composed
of agents, each holding its own variables, that are connected by constraints to vari-
ables of other agents. Due to the distributed nature of the problem, message delay
can have unexpected effects on the behavior of distributed search algorithms on
DisCSPs. This has been recently shown in experimental studies of asynchronous
backtracking algorithms [1, 15].
To evaluate the impact of message delay on the run of DisCSP search algorithms,
a model for distributed performance measures is presented. The model counts the
number of non concurrent constraints checks, to arrive at a solution, as a non
concurrent measure of distributed computation. A simpler version measures dis-
tributed computation cost by the non-concurrent number of steps of computation.
An algorithm for computing these distributed measures of computational effort is
described. The realization of the model for measuring performance of distributed
search algorithms is a simulator which includes the cost of message delays. Two
families of distributed search algorithms on DisCSPs are investigated. Algorithms
that run a single search process, and multiple search processes algorithms. The
two families of algorithms are described and associated with existing algorithms.
The performance of three representative algorithms of these two families is mea-
sured on randomly generated instances of DisCSPs with delayed messages. The
delay of messages is found to have a strong negative effect on single search pro-
cess algorithms, whether synchronous or asynchronous. Multi search process al-
gorithms, on the other hand, are affected very lightly by message delay.

Key words: Distributed Constraint Satisfaction, Search, Distributed AI.

1 Introduction

Distributed constraints satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf. [18,
17]). Agents check the value assignments to their variables for local consistency and
exchange messages among them, to check consistency of their proposed assignments
against constraints with variables that belong to different agents [18, 2].



Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - run time, which measures the com-
putational effort and network load [8]. The time performance of search algorithms on
DisCSPs has traditionally been measured by the number of computation cycles or steps
(cf. [18]). In order to take into account the effort an agent makes during its local assign-
ment the computational effort can be measured by the number of constraints checks that
agents perform. However, care must be taken to measure thenon-concurrentconstraints
checks. In other words, count computational effort of concurrently running agentsonly
onceduring each concurrent running instance ([9, 13]). Measuring the network load
poses a much simpler problem. Network load is generally measured by counting the
total number of messages sent during search [8].

The first attempts to compare run times of distributed search algorithms on DisC-
SPs used a synchronous simulator and instantaneous message arrival. During one step
of computation (cycle) of the simulator all messages of all agents are delivered and
all resulting computations by the receiving agents are completed [18]. The number of
these synchronous steps of computation in a standard simulator served to measure the
non-concurrent run-time of a DisCSP algorithm [18]. It is clear that the comparison
of asynchronous search algorithms by synchronizing them to run on a simulator is not
satisfactory. In fact, comparing concurrent run-times of distributed computations must
involve some type of asynchronous time considerations [7, 9].

The need to define a non-concurrent measure of time performance arises even for an
optimal communication network, in which messages arrive with no delay. It turns out
that for ideal communication networks one can use the number of non-concurrent con-
straints checks (NCCCs), for an implementation independent measure of non-concurrent
run time [9]. When messages are not instantaneous, the problem of measuring dis-
tributed performance becomes more complex. On realistic networks, in which there are
variant message delays, the time of run cannot be measured in steps of computation.
Take for example Synchronous Backtracking (SBT ) [18]. Agents inSBT perform
their assignments one after the other, in a fixed order, simulating a simple backtrack
algorithm. Since all agents are completely synchronized and no two agents compute
concurrently, the number of computational steps is not affected by message delays.
However, the effect on the run time of the algorithm is completely cumulative (delaying
each and every step) and is thus large (see section 6 for details).

The present paper proposes a general method for measuring run time of distributed
search algorithms on DisCSPs. The method is based on standard methods of asyn-
chronous measures of clock rates in distributed computation [7] and uses constraints
checks as a logical time unit [9]. In order to evaluate the impact of message delays
on DisCSP search algorithms, we present anAsynchronous Message Delay Simulator
(AMDS) which measures the logical time of the algorithm run. TheAMDS mea-
sures run time in non-concurrent steps of computation or in non-concurrent constraints
checks and simulates message delays accordingly. TheAMDS and its underlying asyn-
chronous measuring algorithm for comparing concurrent running times is described in
detail in section 3. The validity of theAMDS’ counting algorithm, to measure concur-
rent logical time, is proved in section 4. It can simulate systems with different types of

2



message delays. From fixed message delays, through random message delays, to sys-
tems in which the length of the delay of each message is dependent on the current load
of the network. The delay is measured in non-concurrent computation steps (or non-
concurrent constraints checks). The final logical time that is reported as the cost of the
algorithm run, includes steps of computation which were actually performed by some
agent, and computational steps which were added as message delay simulation while
no computation step was performed concurrently (see section 3).

The AMDS presented in section 3 enables a deeper exploration of the behavior
of different search algorithms for DisCSPs on systems with different message delays.
Message delays emphasize properties of families of algorithms which are not appar-
ent when the algorithms are run in a system with perfect communication. Experimental
evidence for such behavior was found recently for asynchronous backtracking algo-
rithms [1, 15]. The study of [1] measured run times on a multi-machine implementation
of the compared algorithms. While serving as a first attempt to study the impact of
communication delays on DisCSP algorithms, such an implementation does not enable
simple duplication of experiments, for diverse algorithms and measures, as does the
present well-defined simulation algorithm.

The present study of the behavior of distributed search algorithms on DisCSPs uses
a selected set of three very differentDisCSP algorithms. All search algorithms on
DisCSPs can be divided into two families. Single search process algorithms (SPAs)
andconcurrent(multiple) searchprocess algorithms(CSAs). The only former exper-
imental study of the performance of DisCSP algorithms compared two asynchronous
single search algorithms [1].

The state of single process algorithms is defined by asingle tuple of assignments,
one for each agent. When this set of assignments is complete (containing assignments
to all variables of all agents) and consistent, the SPA stops and reports a solution. A sim-
ple representation for the state of anysynchronousSPA, likeSBT [18] or CBJ [21],
is a data structure that holds thecurrent partial assignmentof the search (CPA).
Single search process algorithms can be asynchronous. Inasynchronousbacktracking
(ABT ) [18, 2], each agent holds its view of the current assignments of other agents in
a singleAgent view. When all agents are idle, allAgent V iews are consistent and a
solution is reported [18, 2].

In concurrent search, multiple concurrent processes perform search on non inter-
secting parts of the global search space of a DisCSP ([14, 20, 6]). All agents in aCSA
participate in every search process, since each agent holds some variables of the search
space. Each agent holds the current domains of its variables, for each of the search
processes. Messages of CSAs carry theIDs of their related search process and the
agents use the corresponding current domains for consistent assignments. The concur-
rent backtracking algorithm (ConcBT ), distributes among agents a dynamically chang-
ing number of search processes [22]. Agents generate and terminate search processes
dynamically during the run of theConcBT algorithm [22]. The concurrent dynamic
backtracking (ConcDB) algorithm incorporates dynamic backtracking to the concur-
rent performing search processes. As a result, one search procedure can reveal a dead
end of another concurrent search procedure and terminate it [23].

3



In interleaved asynchronous backtracking, agents participate in multiple processes
of asynchronous backtracking. Each agent keeps a separateAgent view for each search
process inIDIBT [6]. The number of search processes is fixed by the first agent. The
performance of concurrent asynchronous backtracking [14, 6] was tested and found to
be ineffective for more than two concurrent search processes [6].

The plan of the paper is as follows. Distributed constraint satisfaction problems
(DisCSPs) are presented in section 2. A detailed introduction of the simulator that is
used in our experiments, and of the method of evaluating the run time ofDisCSP al-
gorithms in the presence of message delays, is presented in section 3. Section 4 contains
a proof of the validity of the simulating algorithm. section 5 presents the two families
of DisCSP search algorithms - single process (SPAs) and concurrent search (CSAs).
This is followed by a detailed description of the compared algorithms - synchronous
SPA (CBJ), asynchronous backtracking (ABT ), and concurrent search (ConcDB).
The first two algorithms have appeared in different versions in the literature and the
compared versions are the most up to date. Synchronous BT uses backjumping [21, 3]
and asynchronous BT resolvesNogoods [2]. The representative concurrent search al-
gorithm isConcDB which was found to perform best in a recent study [23]. Section 6
presents extensive experimental results, comparing all three algorithms on randomly
generatedDisCSPs with different types of message delays. A discussion of the per-
formance and advantages of the families of algorithms, on differentDisCSP instances
and communication networks, is presented in section 7. Our conclusions are in sec-
tion 8.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSP) is composed of a set ofk agentsA1, A2, ..., Ak. Each agentAi contains a
set of constrained variablesXi1 , Xi2 , ..., Xini

. Constraints orrelations R are subsets
of the Cartesian product of the domains of the constrained variables [4]. Abinary
constraint Rij between any two variablesXj andXi is defined as:Rij ⊆ Dj × Di.
In a distributed constraint satisfaction problemDisCSP, the agents are connected by
constraints between variables that belong to different agents (cf. [18, 17]). In addition,
each agent has a set of constrained variables, i.e. alocal constraint network.

An assignment (or a label) is a pair< var, val >, wherevar is a variable of some
agent andval is a value fromvar’s domain that is assigned to it. Apartial assignment
(or a compound label) is a set of assignments of values to a set of variables. Asolution
to aDisCSPis an assignment that includes all variables of all agents, that is consistent
with all constraints. Following all former work onDisCSPs, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents [18].

The delay in delivering a message is assumed to be finite [18]. One simple protocol
for checking constraints, that appears in many distributed search algorithms, is to send a
proposed assignment< var, val >, of one agent to another agent. The receiving agent
checks the compatibility of the proposed assignment with its own assignments and with

4



the domains of its variables and returns a message that either acknowledges or rejects
the proposed assignment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [18, 2].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception

is finite.
3. Messages sent by agentAi to agentAj are received byAj in the order they were

sent.
4. Every agent can access the constraints in which it is involved and check consistency

against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents asJava Threads. Threads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Non-concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [7, 9]. Every agent holds a counter of computation steps
which it increments each time it performs a step. Every message carries the value of the
sending agent’s counter. When an agent receives a message it updates its counter to the
largest value between its own counter and the counter value carried by the message. By
reporting the cost of the search as the largest counter held by some agent at the end of
the search, a non-concurrent measure of search effort is achieved (see [7]).

On systems with message delays, the situation is different. To introduce the prob-
lems of counting in the presence of message delays, let us start with the simplest pos-
sible algorithm. Synchronous backtracking (SBT ) performs assignments sequentially,
one by one and no two assignments are performed concurrently. Consequently, the ef-
fect of message delay is very clear. The number of computation steps is not affected by
message delay and the delay in every step of computation is the delay on the message
that triggered it. Therefore, the total time of the algorithm run can be calculated as the
total computation time, plus the total delay time of messages. In the presence of con-
current computation, the time of message delays must be added to the run-time of the
algorithmonly if no computation was performed concurrently. To achieve this goal, the
simulator counts message delays in terms of computation steps and adds them to the
accumulated run-time. Such additions are performed only for instances when no com-
putation is performed. In other words, when the delay of a message causes all agents to
wait, performing no computation.

In order to simulate message delays, all messages are passed by a dedicatedMailer
thread. The mailer holds a counter of non-concurrent computation steps performed by

5



– upon receiving messagemsg:
1. LTC←max(LTC, msg.LTC)
2. delay← choose delay
3. msg.delivery time←msg.LTC + delay
4. outgoing queue.add(msg)
5. deliver messages

– when there are no incoming messages and all agents are idle
1. LTC← outgoing queue.first msg.LTC
2. deliver messages

– deliver messages
1. foreach (message m in outgoing queue)
2. if (m.delivery time ≤ LTC)
3. deliver(m)

Fig. 1.The Mailer algorithm

agents in the system. This counter represents the logical time of the system and we re-
fer to it as theLogical Time Counter(LTC). Every message delivered by the mailer
to an agent, carries theLTC value of its delivery to the receiving agent. An agent that
receives a message updates its counter to the maximum value between the received
LTC and its own value. Next, it performs the computation step, and sends its outgoing
messages with the value of its counter, incremented by 1. The same mechanism can
be used for computing computational effort, by counting non-concurrent constraints
checks. Agents add to the counter values in outgoing messages the number of con-
straints checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrent computation steps.
To do so it uses theLTC, according to the algorithm presented in figure 1. Let us go
over the details of theMailer algorithm, in order to understand the measurements
performed by the simulator during run time.

When the mailer receives a message, it first checks if theLTC value that is carried
by the message is larger than its own value. If so, it increments the value of theLTC
(line 1). In line 2 a delay for the message (in number of steps) is selected. Here, different
types of selection mechanisms can be used, from fixed delays, through random delays,
to delays that depend on the actual load of the communication network. To achieve
delays that simulate dependency on network load, for example, one can assign message
delays that are proportional to the size of the outgoing message queue.

Each message is assigned adelivery time which is the sum of the value of the
message’sLTC and the selected delay (in steps), and placed in theoutgoing queue
(lines 3,4). Theoutgoing queue is a priority queue in which the messages are sorted by
delivery time, so that the first message is the message with the lowestdelivery time.
In order to preserve the third assumption from section 2, messages from agentAi to
agentAj cannot be placed in the outgoing queue before messages which are already
in the outgoing queue which were also sent fromAi to Aj . This property is essential
to asynchronous backtracking which is not correct without it (cf. [2]). The last line of
theMailer’s code calls methoddeliver messages, which delivers all messages with

6



delivery time less or equal to the mailer’s currentLTC value, to their destination
agents.

When there are no incoming messages, and all agents are idle, if theoutgoing queue
is not empty (otherwise the system is idle and a solution has been found) the mailer in-
creases the value of theLTC to the value of thedelivery time of the first message in
the outgoing queue and callsdeliver messages. This is a crucial step of the simula-
tion algorithm. Consider the run of a synchronous search algorithm. ForSynchronous
Backtracking(SBT ) [18], every delay needs the mechanism of updating the Mailer’s
LTC (line 1 of the second function of the code in figure 1). This is because only one
agent is computing at any given instance, in synchronous backtrack search.

The non-concurrent run time reported by the algorithm, is the largestLTC value
that is held by any agent at the end of the algorithm’s run. By incrementing theLTC
only when messages carryLTCs with values larger than the mailer’sLTC value, steps
that were performed concurrently are not counted twice. This is an extension of Lam-
port’s logical clocks algorithm [7], as proposed for DisCSPs by [9], and extended here
for message delays.

A similar description holds for evaluating the algorithm run in non-concurrent con-
straints checks. In this case the agents need to extend the value of theirLTCs by the
number of constraints checks they actually performed in each step. This enables a con-
current performance measure that incorporates the computational cost of the local step,
which might be different in different algorithms. It also enables to evaluate algorithms
in which agents perform computation which is not triggered or followed by a message.

4 Validity of the AMDS

The validity of the proposed simulation algorithm can be established in two steps. First,
its correspondence to runs of aSynchronous (cycle-counting) Simulatoris presented.
Understanding the nature of this correspondence, enables to show that a corresponding
synchronous cycle simulator cannot measure concurrent delayed steps and theAMDS
is necessary.

In a Synchronous Cycle Simulator(SCS) [18], each agent can read all messages
that were sent to it in the previous cycle and perform a single computation step. The
computation is followed by the sending of messages (which will be received in the next
cycle). Agents can be idle in some cycles, if they do not receive a message which trig-
gers a computation step. The cost of the algorithm run, is the number of synchronous
cycles performed until a solution is found or a non solution is declared (see [18]). Mes-
sage delay can be simulated in such a synchronous simulator by delivering messages to
agents several cycles after they were sent. Our first step is to show the correspondence
of AMDS and anSCS.

Theorem 1. Any run ofAMDS can be simulated by aSynchronous Cycle Simulator
(SCS). Each cycleci of theSCS corresponds to anLTC value ofAMDS.

Proof. Every messagem sent by an agentAi to agentAj , using theAMDS, can be
assigned a valued which is the largest value between theLTC carried bym in the
AMDS run and the value of theLTC held by Aj when it receivesm. Running a

7



Synchronous Cycle Simulator(SCS) and assigning each messagem with the value
d calculated as described above, the message can be delivered toAj in cycle d. The
outcome of this specialSCS is that every agent in every cycleci receives the exact
messages as the agents in the correspondingAMDS and the histories of all these mes-
sages are equivalent. This means that agents have the same knowledge about the other
agents as the agents performing the corresponding steps in theAMDS run. Assuming
the algorithm is deterministic, each agent will perform the same computation and send
the same messages. If the algorithm includes random choices the run can be simulated
by recordingAMDS choices and forcing the same choice in the synchronous simulator
run.2

The theorem demonstrates that for measuring the number of steps of computation,
the asynchronous simulator is equivalent to a standardSCS that does not wait for
all agentsto complete their computation in a given cycle, in order to move to the next
cycle. Message delays are simulated simply by theSCS delivering messages in delayed
cycles.

The validity and importance of the asynchronous simulator can now be understood.
Consider the important case where computational effort needs to be measured, in terms
of constraints checks for example. At each cycle agents perform different amounts of
computation, depending on the algorithm, on the arrival of messages, etc. TheSCS
has no way to “guess” the amount of computation performed by each agent in any
given step or cycle. It therefore cannot deliver the resulting message in the correct cycle
(one that matches the correct amount of computation and waiting). The natural way
to incorporate the computational cost into the performance measure is to ”clock” the
simulator by CCs (for example). But this is equivalent to using theAMDS as proposed
in section 3.

5 Families of DisCSP search algorithms

Algorithms for solving DisCSPs can be divided into two families: single search process
algorithms (SPAs) and multiple search process algorithms (MPAs). The general model
of DisCSPs has variables owned by agents, who assign them values. The distinction
between the two families of algorithms is in the number of concurrent assignments that
agents maintain. In SPAs each agent can have no more than one assignment to its vari-
able, at any single instance. In multiple process algorithms (MPAs), on the other hand,
agents maintain multiple concurrent assignments to their variable. To give an example,
synchronous backtracking (SBT) is a single process algorithm. During search, a single
CPA carries the assignments of some of the agents. The other agents which are waiting
for the message with assignments to arrive, are still unassigned. Therefore, each agent,
in every step of the search, has either one assignment or none [18]. Asynchronous back-
tracking (ABT) is also a SPA. All the variables in ABT have exactly one assignment at
each instant of its run [2].

To maintain two concurrent assignments in a DisCSP, think of the first agent as
assigning two of its values to its variable. It then puts each assignment on a different
message and initializes a backtracking process for each one. Each backtrack process

8



traverses all agents, not necessarily at the same order, to accumulate assignments to all
variables of all agents. All agents receive eventually two messages. One message has the
first assignment for the first agent and the other has the second assignment that the first
agent performed. Agents that receive a message either add their compatible assignment
to the partial assignment already on the message, or backtrack by sending the message
back. All agents use a different current domain for each of the messages. It is easy to
see that all agents react to the two messages in exactly the same way, assigning their
variable on it or backtracking. This process stops when one of the messages accumulates
a complete assignment and reports a solution, or when both messages return to the first
agent and find no more values to assign. In this case the two-process algorithm reports
failure.

Several single process DisCSP search algorithms have appeared in the literature in
the last decade. Synchronous algorithms like synchronous backtrack (SBT) and conflict-
based backjumping (CBJ) [18, 21]. Asynchronous algorithms like asynchronous back-
tracking (ABT ), asynchronous aggregations search (AAS) and asynchronous forward-
checking (AFC) [15, 2, 10]. In contrast, only few multiple process DisCSP search al-
gorithms appear in the literature [14, 6, 22]. The concurrent dynamic backtracking algo-
rithm (ConcDB), with dynamic splitting of search processes, will be the representative
of this family in the present study.ConcDB incorporates dynamic splitting, generat-
ing a variable number of search processes. Furthermore, the search processes cooporate
inorder to detect and terminate invalid active search processes [23]. Multiple search pro-
cess versions of asynchronous backtracking were found not to improve for more than 2
concurrent processes [6]

In the following subsections three representative algorithms of the above two fam-
ilies are described. Two single-process algorithms, one synchronous (CBJ) and one
asynchronous (ABT), and one multiple-process algorithm - concurrent dynamic back-
tracking (ConcDB). The performance of the three representative algorithms is evalu-
ated in section 6 and the impact of delayed messages on their performance is presented.
The impact of delayed messages on each of the algorithms is found to be related to the
properties of the algorithm’s family and will be explained in the discussion (Section 7).

5.1 Conflict Based Backjumping

The Synchronous Backtrack algorithm (SBT ) [18], is a distributed version of chrono-
logical backtrack [11].SBT has a total order among all agents. Agents exchange a
partial solution that we termCurrent Partial Assignment(CPA) which carries a con-
sistent tuple of the assignments of the agents it passed so far. The first agent initializes
the search by creating aCPA and assigning its variable on it. Every agent that receives
theCPA tries to assign its variable without violating constraints with the assignments
on theCPA. If the agent succeeds to find such an assignment to its variable, it appends
the assignment to the tuple on theCPA and sends it to the next agent. Agents that
cannot extend the consistent assignment on theCPA, send theCPA back to the previ-
ous agent to change its assignment, thus perform a chronological backtrack. An agent
that receives aCPA in a backtrack message removes the assignment of its variable
and tries to reassign it with a consistent value. The algorithm ends successfully if the

9



– CBJ:
1.done← false
2.if (first agent)
3. CPA← createCPA
4. assignCPA
5. while(not done)
6. switch msg.type
7. stop:done← true
8. backtrack: removelast assignment
9. assignCPA
10. CPA:refreshdomain
11. assignCPA

– assignCPA:
1. CPA← assignlocal
2. if (is consistent(CPA))
3. if (is full(CPA))
4. report solution
5. stop
6. else
7. send(CPA, next)
8. else
9. backtrack

– backtrack:
1. CPA← resolve nogoods
2. if (is empty(CPA))
3. CPA← no solution
4. stop
5. else
6. send(backtrack, CPA.last asignee)

– remove last assignment:
1. store(CPA.lastassignment,CPA)
2. CPA← {last sent CPA} \ {last assignment}
3. currentdomain← {current domain} \ {last assignment}

– refresh domain:
1. for eachstoredNogood sn
2. if (not consistent(CPA,sn))
3. currentdomain← {current domain} ∪ {sn.last assignment}

– stop:
1. send(stop,all other agents)
2. done← true

Fig. 2.The Distributed CBJ algorithm

last agent manages to find a consistent assignment for its variable. The algorithm ends
unsuccessfully if the first agent encounters an empty domain [18].

The synchronous (distributed) version of Conflict Based Backjumping (CBJ) im-
proves on simple synchronous backtrack (SBT ) by using a method based on dynamic
backtracking [5]. In the improved version, when an agent removes a value from its

10



variable’s domain, it stores the eliminating explanation (Nogood), i.e. the subset of the
CPA that caused the removal. When a backtrack operation is performed, the agent re-
solves itsNogoods creating a conflict set which is used to determine the culprit agent to
which the backtrack message will be sent. The resulting synchronous algorithm has the
backjumping property (i.e.CBJ) [5]. When theCPA is received again, values whose
eliminatingNogoods are no longer consistent with the partial assignment on theCPA
are returned to the agents’ domain.

The CBJ algorithm is presented in figure 2. In the main function, the first agent
initializes the search by creating aCPA, assigning and sending it by using the function
assign CPA (lines 2 - 4). Lines 5 to 10 describe how agents respond to one of three
types of messages:

1. stop: indicating that the search has ended.
2. CPA: carrying a CPA forward.
3. backtrack: carrying a CPA backwards, with an inconsistent assignment.

Upon the reception of a stop message the agent simply stops the search by exiting the
loop. When aCPA moving forward is received, the agent first calls functionrefresh domain.
This returns to the agent’scurrent domain values whose explanation is not included
in the received CPA. Next, the agent calls functionassign CPA, attempting to assign
its variable.

When abacktrack message is received, the agent calls functionremove last assignment
which removes the value assignment of the agent in the inconsistentCPA from its
current domain. It then stores it with the receivedCPA in the form of aNogood.
Finally, it replaces theCPA with a copy of the lastCPA it sent, which holds the
assignment it will try to extend and send forward. This takes place in the function
assign CPA that is called immediately afterremove last assignment. When the
agent fails to extend aCPA it calls functionbacktrackwhose first line resolves the
inconsistent subset of the CPA (line 1). Then, a check is made whether theNogood
created is empty which will indicate theDisCSP has no solution (lines 2-4). If the
Nogood found is not empty, it is sent to the agent with the lowest priority whose assign-
ment is included in theNogood (lines 6). This is standard dynamic backtracking [5].

5.2 Asynchronous Backtracking

TheAsynchronous Backtrack algorithm (ABT ) was presented in several versions
over the last decade and is described here in accordance with the more recent papers [18,
2]. In the ABT algorithm, agents hold an assignment for their variables at all times,
which is consistent with their view of the state of the system (i.e. theirAgent view).
When the agent cannot find an assignment consistent with itsAgent view, it changes
its view by eliminating a conflicting assignment from itsAgent view data structure
and sends back aNogood.

TheABT algorithm [18], has a total order of priorities among agents. Agents hold a
data structure calledAgent view which contains the most recent assignments received
from agents with higher priority. The algorithm starts by each agent assigning its vari-
able, and sending the assignment to neighboring agents with lower priority. When an
agent receives a message containing an assignment (anok? message [18]), it updates

11



– when received(ok?, (xj , dj)) do
1. add(xj , dj) to agent view;
2. check agent view;end do;

– when received(nogood, xj , nogood) do
1. add nogood to nogood list;
2. whennogood contains an agentxk that is not its neighbordo
3. requestxk to addxi as a neighbor,
4. and add(xk, dk) to agent view; end do;
5. old value← current value; check agent view;
6. whenold value = current value do
7. send (ok?, (xi, current value)) to xj ; end do; end do;

– procedurecheck agent view
1. whenagent view andcurrent value are not consistentdo
2. if no value inDi is consistent withagent view then backtrack;
3. elseselectd ∈ Di whereagent view andd are consistent;
4. current value← d;
5. send(ok?,(xi, d)) to low priority neighbors; end if ;end do;

– procedurebacktrack
1. nogood← resolve Nogoods;
2. whennogood is an empty setdo
3. broadcast to other agents that there is no solution;
4. terminate this algorithm;end do;
5. select(xj , dj) wherexj has the lowest priority in nogood;
6. send(nogood, xi, nogood) to xj ;
7. remove(xj , dj) from agent view; end do;
8. check agent view

Fig. 3.The ABT algorithm with fullNogood recording

its Agent view with the received assignment and if needed, replaces its own assign-
ment, to achieve consistency. Agents that reassign their variable, inform their lower
priority neighbors by sending themok? messages. Agents that cannot find a consistent
assignment, send the inconsistent tuple in theirAgent view in a backtrack message
(a Nogood message [18]). TheNogood is sent to the lowest priority agent in the in-
consistent tuple, and its assignment is removed from theirAgent view. Every agent
that sends aNogood message, makes another attempt to assign its variable with an
assignment consistent with its updatedAgent view.

Agents that receive aNogood, check its relevance against the content of their
Agent view. If the Nogood is relevant, the agent stores it and tries to find a consis-
tent assignment. In any case, if the agent receiving theNogood keeps its assignment,
it informs theNogood sender by re-sending it anok? message with its assignment. An
agentAi which receives aNogood containing an assignment of agentAj which is not
included in itsAgent view, adds the assignment ofAj to it’s Agent view and sends a
message toAj asking it to add a link between them. In other words,Aj is requested to
inform Ai about all assignment changes it performs in the future [2, 18].

12



The performance ofABT can be strongly improved by requiring agents to read
all messages they receive before performing computation [18]. A formal protocol for
such an algorithm was not published. The idea is not to reassign the variable until all
the messages in the agent’s ’mailbox’ are read and theAgent view is updated. This
technique was found to improve the performance ofABT on the harder instances of
randomly generated DisCSPs by a factor of 4 [21]. However, this property makes the
efficiency ofABT dependent on the contents of the agent’s mailbox in each step, i.e.
on message delays (see section 6). The consistency of theAgent view held by an agent
with the actual state of the system before it begins the assignment attempt is affected
directly by the number and relevance of the messages it received up to this step.

Another improvement to the performance ofABT can be achieved by using the
method for resolving inconsistent subsets of theAgent view, based on methods of
dynamic backtracking. A version ofABT that uses this method was presented in [2].
In [21] the improvement ofABT using this method overABT sending its fullAgent view
as aNogood was found to be minor. In all the experiments in this paper a version of
ABT which includes both of the above improvements is used. Agents read all incoming
messages that were received before performing computation andNogoods are resolved,
using the dynamic backtracking method [2].

TheABT algorithm is presented in figure 3 [18]. The first procedure is performed
when anok? message is received. The agent adds the received assignment to itsAgent view
and calls procedurecheck agent view.

The second procedure is performed when aNogood is received. TheNogood is
stored (line 1), and a check is made whether it contains an assignment of a non neigh-
boring agent. If so, the agent sends a message to the unlinked agent in order to establish
a link between them and adds its assignment to itsAgent view (lines 2-4). Before call-
ing procedurecheck agent view, the current value is stored (line 5). If for any reason
the current value remains the same after callingcheck agent view, anok? message
carrying this assignment is sent to the agent from whom theNogood was received
(lines 6,7).

In procedurecheckagentviewif the current value is not consistent with theAgent view
the agent searches its domain for a consistent value. If it does not find one, it calls pro-
cedurebacktrack (line 2). If there is a consistent value in its domain, it is placed as the
current value andok? messages are sent through all outgoing links (lines 3-5).

In procedurebacktrack the agent resolves its storedNogoods and chooses the
Nogood to be sent (line 1). If theNogood selected is empty, the algorithm is termi-
nated unsuccessfully (lines 2-4). In other cases the agent sends theNogood to the agent
with the lowest priority whose assignment is included in theNogood, removes that
assignment from theAgent view and callscheck agent view.

5.3 Concurrent Dynamic Backtracking

In order to present concurrent dynamic backtracking a simpler more general version,
ConcBTis first presented, followed by the changes in order to add dynamic backtrack-
ing to the algorithm. TheConcBT algorithm [22] performs multiple concurrent back-
track searches on disjoint parts of theDisCSPsearch-space. Each agent holds the data
relevant to its state on each sub-search-space in a separate data structure which is termed

13



Search Process (SP). Agents in theConcBT algorithm pass their assignments to other
agents on aCPA(Current Partial Assignment) data structure. EachCPArepresents one
search process, and holds the agents current assignments in the corresponding search
process. An agent that receives aCPA tries to assign its local variable with values that
are consistent with the assignments on theCPA, using the current domain in theSP
related to the receivedCPA. The uniqueness of theCPA for every search space ensures
that assignments are not done concurrently in a single sub-search-space [22].

Exhaustive search processes which scan heavily backtracked search-spaces, can be
split dynamically. Each agent can generate a set ofCPAs that split the search space of
a CPA that passed through that agent, by splitting the domain of its variable. Agents
can perform splits independently and keep the resulting data structures (SPs) privately.
All other agents need not be aware of the split, they process allCPAs in exactly the
same manner (see [22] for a detailed explanation).CPAs are created either by the Ini-
tializing Agent (IA) at the beginning of the algorithm run, or dynamically by any agent
that splits an active search-space during the algorithm run. A heuristic of counting the
number of times agents pass theCPAin a sub-search-space (without finding a solution),
is used to determine the need for re-splitting of that sub-search-space. This generates a
mechanism of load balancing, creating more search processes on heavily backtracked
search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment in the search-space corresponding to the partial assignment on theCPA.
Agents that have performed dynamic splitting, have to collect all of the returningCPAs,
of the relevantSP , before performing a backtrack operation. In the description of the
ConcBT algorithm the following terminology is used:

– CPA generator: EveryCPAcarries theID of the agent that created it.
– steps limit: the number of steps (from one agent to the next) that will trigger a

split, if theCPAdoes not find a solution, or return to its generator.
– split set: the set ofSP -IDs, stored in eachSP , including theIDs of the active

SPs that were split from theSP by the agent holding thesplit set.
– origin SP : an agent that performs a dynamic split, holds in each of the newSPs

the ID of the SP it was split from (i.e. oforigin SP ). An analogous definition
holds fororigin CPA. Theorigin SP of anSPthat was not created in a dynamic
split operation is its ownID.

The messages exchanged by agents inConcBT are:

– CPA - a regular CPA message.
– backtrack - a CPA sent in a backtrack operation.
– stop- a message indicating the end of the search.
– split - a message that is sent in order to trigger a split operation. Contains theID of

theSPto be split.

The ConcBT algorithm is presented in Figure 4 and the detailed description of its
different functions is as follows.

– The main functionConcBT, initializes the search if it is run by theinitializing
agent (IA). It initializes the algorithm by creating multipleSPs, assigning eachSP

14



– ConcBT:
1. done← false
2. if (IA) then initialize SPs
3. while(not done)
4. switch msg.type
5. split: performsplit
6. stop: done← true
7. CPA: receiveCPA
8. backtrack: receiveCPA

– initialize SPs:
1. for i← 1 todomain size
2. createSP(i)
3. SP[i].domain← domain.val[i]
4. CPA← createCPA(i)
5. assign CPA

– receiveCPA:
1. CPA←msg.CPA
2. if (first received(CPAID))
3. createSP(CPAID)
4. if (CPA generator = ID)
5. CPA steps← 0
6. else
7. CPA steps ++
8. if (CPA steps = steps limit)
9. send(split, CPA generator)
10. if (msg.type =backtrack)
11. removelast assignment
12. assign CPA

– assignCPA:
1. CPA← assignlocal
2. if (is consistent(CPA))
3. if (is full(CPA))
4. report solution
5. stop
6. else
7. send(CPA, nextagent)
8. else
9. backtrack

– backtrack:
1. delete(currentCPA fromorigin split set)
2. if (origin split set is empty)
3. if (IA)
4. CPA← no solution
5. if (no activeCPAs)
6. reportno solution
7. stop
8. else
9. send(backtrack, last assignee)
10. else
11. mark fail(current CPA)

– perform split:
1. if (not backtracked(CPA))
2. var← select split var
3. if (var is not null)
4. createsplit SP(var)
5. createsplit CPA(SPID)
6. add(SPID to origin split set)
7. assign CPA
8. else
9. send(split, next agent)

– stop:
1. send(stop,all other agents)
2. done← true

Fig. 4.The ConcBT algorithm

with one of the first variable’s values. After initialization, it loops forever, waiting
for messages to arrive.

– receiveCPA first checks if the agent holds aSPwith the ID of thecurrent CPA
and if not, creates a newSP (lines 2,3). If theCPA is received by its generator,
it changes the value of the steps counter (CPA steps) to zero (lines 4,5). This
prevents unnecessary splitting. Otherwise, it checks whether theCPAhas reached
the steps limit and a split must be initialized (lines 7-9). Before assigning the
CPA a check is made whether theCPA was received in abacktrack, if so the

15



previous assignment of the agent which is the last assignment made on theCPA is
removed, beforeassign CPA is called (lines 10-11).

– assignCPA tries to find an assignment for the local variables of the agent, which
is consistent with the assignments on thecurrent CPA. If it succeeds, the agent
sends theCPA to the selectednext agent (line 7). If not, it calls thebacktrack
method (line 9).

– Thebacktrack method is called when a consistent assignment cannot be found in a
SP. Since a split might have been performed by the current agent, a check is made,
whether all theCPAs that were split from thecurrent CPA have also failed (line
2). When all splitCPAs have returned unsuccessfully, a backtrack message is sent
carrying the ID of theorigin CPA. In case of anIA, theorigin SP is marked as
a failure (lines 3-4). If all otherSPs are marked as failures, the search is ended
unsuccessfully (line 6).

– Theperform split method tries to find in theSPspecified in thesplit message, a
variable with a non-empty currentdomain. It first checks that theCPA to be split
has not been sent back already, in a backtrack message (line 1). If it does not find a
variable for splitting, it sends a splitmessage tonext agent (lines 8-9). If it finds
a variable to split, it creates a newSPandCPA, and callsassignCPA to initialize
the new search (lines 3-5). TheID of the generatedCPA is added to the split set
of the dividedSP ’s origin SP (line 6).

The best version of concurrent backtracking search uses methods of backjumping
that are based onDynamic Backtracking[5]. Each agent that removes a value from its
current domain stores the partial assignment that caused the removal of the value. This
stored partial assignment is called aneliminating explanationby [5]. When the current
domain of an agent empties, the agent constructs a backtrack message from the union
of all assignments in its stored removal explanations. The union of all removal explana-
tions is an inconsistent partial assignment, or aNogood[5, 18]. The backtrack message
is sent to the agent which is the owner of the most recently assigned variable in the
inconsistent partial assignment. This version of concurrent search is calledConcurrent
Dynamic Backtracking (ConcDB).

In concurrent dynamic backtracking, a shortNogoodcan rule out multiple sub-
search-spaces, all of which contain no solution and are thus unsolvable. In order to ter-
minate the corresponding search processes, an agent that receives a backtrack message
performs the following procedure:

– Detect theSP to which the received (backtrack)CPA either belongs or was split
from.

– Check if theCPA corresponding to the detectedSP was split down its path.
– If it was:

• Send anunsolvable message to thenextagentof the relatedSP , thus gener-
ating a series of messages along the path of theCPA.

• choose a new unique ID for theCPA received and its relatedSP .
• continue the search using theSP andCPA with the new ID.

– Check if there are otherSPs which contain the received inconsistent partial assign-
ment (by calling functioncheckSPs). Send correspondingunsolvable messages
and resume the search on them with new generatedCPAs.

16



ConcDB:
..
..
..
9. unsolvable: mark unsolvable(msg.SP)

receiveCPA:
1. CPA←msg.CPA
2. if (unsolvable SP)
3. terminate CPA
4. else
..
..
..
14. if (msg.type =backtrack)
15. checkSPs(CPA.inconsistentassignment)
16. lastsentCPA.remove last assignment
17. CPA← last sent CPA
18. if (SPsplit ahead)
19. send(unsolvable, SP.nextagent)
20. renameSP
21. assign CPA

backtrack:
..
..
9. backtrack msg←

inconsistent assignment
10. send(backtrack msg,

lowest priority assignee)
11. else
12. mark fail(current CPA)

mark unsolvable(SP)
1. mark SP unsolvable
2. send(unsolvable, SP.nextagent)
3. for eachsplit SP in SP.origin.splitset
4. mark splitSP unsolvable
5. send(unsolvable, splitSP.nextagent)

check SPs(inconsistentassignment)
1. for eachsp in {SPs \ current SP}
2. if (sp.contains(inconsistentassignment))
3. send(unsolvable,sp.next agent)
4. lastsentCPA.remove last assignment
5. CPA← last sentCPA
6. sp.renameSP
7. assign CPA

Fig. 5.Methods for Dynamic Backtracking ofConcDB

Theunsolvablemessage used by theConcDB algorithm, is a message not used in
Concurrent Backtracking (ConcBT), which indicates an unsolvable sub-search-space.
An agent that receives anunsolvable message performs the following operations for
the unsolvableSP and each of theSPs split from it:

– mark theSP as unsolvable.
– send anunsolvable message which carries the ID of theSP to the agent to whom

the relatedCPA was last sent.

The change of ID makes the resumed search process independent of the process
of terminating unsolvable search spaces. If the agents would have resumed the search
using theID of the originalSP or of the receivedCPA, a race condition would arise
since there is no synchronization between the process of terminating unsolvable search
procedures to the resumed valid search procedure. In such a case, an agent that received
anunsolvable messagemight have marked an active search space as unsolvable.

Figure 5 presents the methodsConcDB, receiveCPA and backtrack, that were
changed from the general description ofConcurrent Searchin Figure 4, followed by
two additional methods needed for addingDynamic Backtrackingto concurrent search.
Let us look at the differences in code. In methodreceiveCPA a check is made in lines
3,4 whether theSP related to the receivedCPA is marked unsolvable. In such a case

17



theCPA is not assigned and the relatedSP is terminated. For a backtrackingCPA
(lines 14-20) a check is made whether there are other SPs which can be declared un-
solvable. This can happen when the head (or prefix) of their partial assignment (their
common head i.e. CH) contains the received inconsistent partial assignment. For such
a case, procedurecheck SPs is called, which for every suchSP found, initiates the
termination of the search process on the unsolvable sub-search-space and resumes the
search with a newly generatedCPA. Then a check is made whether theSP was split
by agents who received theCPA after this agent (line 18). If so, the termination of the
unsolvableSP is initiated by sending anunsolvable message. A new ID is assigned to
the receivedCPA and to its relatedSP (line 20).

In methodbacktrack, the agent inserts the culprit inconsistent partial assignment
into the backtrack message (line 9) before sending it back in line 10. This is the only
difference from the standard backtrack method in Figure 4.

As described above, methodmark unsolvableis part of the mechanism for termi-
nating SPs on unsolvable search spaces. The agent marks theSP related to the message
received, and anySP split from it, as unsolvable and sends unsolvable messages to the
agents to whom the correspondingCPAs were sent.

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by se-
lecting the probabilityp1 of a constraint among any pair of variables and the probability
p2, for the occurrence of a violation among two assignments of values to a constrained
pair of variables. Such uniform random constraints networks ofn variables,k values
in each domain, a constraints density ofp1 and tightnessp2, are commonly used in
experimental evaluations of CSP algorithms (cf. [12, 16]). The experiments were con-
ducted on networks with 15 Agents (n = 15) and 10 values (k = 10). Two density
parameters were used,p1 = 0.4 andp1 = 0.7. The value ofp2 was varied between0.1
to 0.9. This creates problems that cover a wide range of difficulty, from easy problem
instances to instances that take several CPU minutes to solve. For every pair (p1,p2) in
the experiments we present the average over 50 randomly generated instances.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of non-concurrent constraint checks (NCCCs) [9, 23], to measure
computational cost. This measures the combined path of computation, from beginning
to end, in terms of constrait checks. The other measure used is the communication load,
in the form of the total number of messages sent [8]. In order to evaluate the number of
non-concurrent CCs including message delays, the simulator described in section 3 is
used.

In the first set of experiments the three algorithms are compared without any mes-
sage delay. The results presented in Figures 6 and 8 show that the numbers of non-
concurrent constrait checks that the three algorithms perform are very similar, on sys-
tems with no message delays. ABT performs slightly less steps thanCBJ andConcDB
performs slightly better thanABT . When it comes to network load, the results in fig-
ures 7 and 9 show that for the harder problem instances, agents inABT send between

18



Fig. 6.Non-concurrent constraint checks with no message delays (p1 = 0.4)

Fig. 7.Total number of messages with no message delays (p1 = 0.4)

4 to 5 timesmore messagesthan sent by agents runningCBJ andConcDB. All four
figures: 6, 7, 8 and 9 show clearly the presence of a phase transition ([19]).

In the second set of experiments, messages were delayed randomly for 50-100 non-
concurrent constraint checks (as described in section 3). Figure 10 presents the num-
ber of non concurrent constraint checks performed by the three algorithms running on
sparse DisCSPs with random message delays. The most obvious result of Figure 10 is
thatCBJ is affected most from message delay. This could have been expected. Since
CBJ performs no concurrent computation the total amount of message delay is added
to the runtime of the algorithm. This gives a large effect on the run-time results. Fig-
ure 11 presents a closer look at the results ofABT andConcDB in this run. While
ConcDB performed about40% moreNCCCs than the number ofNCCCS it per-

19



Fig. 8.Non-concurrent constraint checks with no message delays (p1 = 0.7)

Fig. 9.Total number of messages with no message delays (p1 = 0.7)

formed with no message delays,ABT performesthree times moreNCCCs than it
does for perfect communication.

Figure 12 presents the total number of messages sent by the three algorithms with
random message delays. It is interesting to see that while the total number of messages
sent byCBJ andConcDB are not affected by message delay, the number of messages
sent byABT grows by a factor of 2.
Figures 13, 14 and 15 show similar results for denser DisCSPs (p1 = 0.7).

The third set of experiments investigates the impact of the size and range of the ran-
dom delays on the different algorithms. The effect of varying the delay size on a sequen-
tial assignment (synchronous) single search algorithm is easy to understand. In order to
investigate the behavior of algorithms which perform concurrent computation, in the

20



Fig. 10.Non-concurrent constraint checks with random message delays (p1 = 0.4)

Fig. 11.A closer look at NCCCs performed by ABT and ConcDB, with random message delays
(p1 = 0.4)

presence of message delays of different sizes and range, experiments were performed
for the harder problem instances. The algorithms were run with an increasing amount
and range of message delay, on the hardest problem instances (tightnessp2 = 0.6 for
p1 = 0.4 andp2 = 0.4 for p1 = 0.7). The impact of random delays on the different
algorithms is presented in Figures 16 and 17. The number of non-concurrent constraint
checks of the single search algorithm (ABT ) grows with the size of message delay. In
contrast, larger delays have a small impact on the number of non-concurrent constraint
checks performed by concurrent search (ConcDB).

21



Fig. 12.Total number of messages with random message delays (p1 = 0.4)

Fig. 13.Non-concurrent constraint checks with random message delays (p1 = 0.7)

7 Discussion

Three sets of experiments to investigate the effect of message delays on the perfor-
mance ofDisCSP search algorithms were performed. Distributed search algorithms
on DisCSPs fall into two distinct families - Single search process algorithms and
concurrent search algorithms. The experiments compared three representative search
algorithms of these two families - Synchronous BT; Asynchronous BT; and Concurrent
DB.

In order to simulate message delays and include their impact in the experimental
results, an asynchronous simulator which delivers messages to agents according to a
logical time counter (LTC) of non-concurrent steps of computation (or non-concurrent

22



Fig. 14.A closer look on the NCCCs performed by of ABT and ConcDB, with random message
delays (p1 = 0.7)

Fig. 15.Total number of messages with random message delays (p1 = 0.7)

constraints checks) was introduced. When computing logical time, the addition of mes-
sage delay to the total cost occurs only when no concurrent computation is performed.

While in systems with perfect communication, where there are no message delays,
the number of synchronous steps of computation (on a synchronous simulator) is a good
measure of the time of the algorithm run, the case is different on realistic systems with
message delays. The number of non-concurrent constraints checks has to take delays
into account. When the number of non-concurrent CCs is calculated, it reveals a large
impact of message delay on the performance of single process algorithms. In other
words, the actual time it would takeCBJ to report a solution (including the delays of
message) is much longer than that ofConcDB or ABT .

23



Fig. 16.Number of non-concurrent CCs vs. size of random message delays (p1 = 0.4)

Fig. 17.Number of non-concurrent CCs vs. size of random message delays (p1 = 0.7)

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of random message delays, some of their computation can be irrelevant due to
inconsistentAgent views while the updating message is delayed. This can explain the
large impact of message delays on the computation performed by ABT (cf. [1, 15]). The
impact is not as strong as in synchronousCBJ (Figures 10, 12, 13 and 15).

In order to further investigate the behaviour of the algorithms in the presence of
message delay the simple method for counting non-concurrent constraint checks of [9]
(see Section 3) can be performed concurrently during the run of theAMDS simula-
tor. This would give us the number ofNCCCs which were actualy performed without
the addition of messge delays to the final result. Figures 18 and 19 present the actual
count of non-concurrent constraints checks (without adding delays) performed by the

24



Fig. 18. Number of non-concurrent CCs actualy performed vs. size of random message delays
(p1 = 0.4)

Fig. 19. Number of non-concurrent CCs actualy performed vs. size of random message delays
(p1 = 0.7)

agents during the algorithm run. As expected, CBJ performs exactly the same num-
ber ofNCCCs as with no delays. The number of NCCCs performed byABT in the
presence of delays,grows by a factor of 2. This illuminates an important feature of the
standard simulation of runs ofDisCSP algorithms. Based on instantaneous arrival of
messages,ABT reads multiple messages at each step. With random message delays,
agents are more likely to respond to a single message, instead of all the messages sent
in the former (ideal) cycle of computation. Messages in asynchronous backtracking
are many times conflicting. As a result, agents perform more unnecessary computation
steps when responding to fewer messages in each cycle. The improvement that results

25



from reading all incoming messages in each step [18], is no longer useful when mes-
sages have random delays. This can explain a similar result for ABT, on a different set
of problems [1]. As can be seen in Figures 18 and 19, for a multiple search process
algorithm, likeConcDB, the number of actual non-concurrent CCs is not affected and
even decreases by the delay of messages.

To illuminate the robustness ofConcDB to message delay imagine the following
example. Consider the case whereConcDB splits the search space multiple times and
the number ofCPAs is larger than the number of agents. In systems with no message
delays this would mean that some of theCPAs are waiting in incoming queues, to be
processed by the agents. This delays the search on the sub-search-spaces they repre-
sent. In systems with message delays, this potential waiting is caused by the system. By
choosing the rightsplit limit, agents can be kept busy at all times, performing compu-
tation against consistent partial assignments. The results in section 6 demonstrate that
the above claim can be achieved.

In terms of network load, the results of section 6 show that asynchronous backtrack-
ing puts a heavy load on the network, which doubles in the case of message delays. The
number of messages sent in concurrent search algorithms, is always much smaller and
is affected very lightly by message delays.

8 Conclusions

A study of the impact of message delay on the performance of DisCSP search algo-
rithms was presented. A method for simulating logical time, in logical units such as
non-concurrent steps of computation or non-concurrent constraint checks, has been
introduced. The number of non-concurrent constraints checks takes into account the
impact of message delays on the actual runtime of DisCSP algorithms. Two families
of DisCSP search algorithms have been presented and investigated. Single process
algorithms (SPAs) and multiple process algorithms (MPAs or concurrent search).
The results imply that, single process algorithms (SPAs), are much more affected by
message delays, than concurrent search. The number of NCCCs grows linearly with
message delay for completely synchronous algorithms likeCBJ . The impact on asyn-
chronous backtracking, (ABT ), is large. Both the computational effort and the load on
the network grow by a large factor, although the effect on runtime is smaller than that
of CBJ . This strengthens the results of [15, 1].

The concurrent search algorithmConcDB shows the highest robustness to message
delays. This is connected to the fact that inConcDB agents always perform computa-
tion against consistent partial assignments. Computation performed in one sub-search-
space while others are delayed is not wasted as in asynchronous backtracking. The
effect of message delay on concurrent search is minor in terms of non concurrent con-
straint checks as well as on its network load.

References

[1] R. Bejar, C. Domshlak, C. Fernandez, , K. Gomes, B. Krishnamachari, B.Selman, and
M.Valls. Sensor networks and distributed csp: communication, computation and complex-
ity. Artificial Intelligence, 161:1-2:117–148, January 2005.

26



[2] C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking without
adding links: a new member in the abt family.Artificial Intelligence, 161:1-2:7–24, January
2005.

[3] I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September
2004.

[4] Rina Dechter.Constraints Processing. Morgan Kaufman, 2003.
[5] M. L. Ginsberg. Dynamic backtracking.J. of Artificial Intelligence Research, 1:25–46,

1993.
[6] Y. Hamadi. Interleaved backtracking in distributed constraint networks.Intern. Jou. AI

Tools, 11:167–188, 2002.
[7] L. Lamport. Time, clocks, and the ordering of events in distributed system.Communication

of the ACM, 2:95–114, April 1978.
[8] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[9] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed

constraints processing algorithms. InProc. AAMAS-2002 Workshop on Distributed Con-
straint Reasoning DCR, pages 86–93, Bologna, July 2002.

[10] A. Meisels and R. Zivan. Asynchronous forward-checking for distributed csps. In W. Zhang,
editor,Frontiers in Artificial Intelligence and Applications. IOS Press, 2003.

[11] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational Intel-
ligence, 9:268–299, 1993.

[12] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-
lems.Artificial Intelligence, 81:81–109, 1996.

[13] M. C. Silaghi. Asynchronously Solving Problems with Privacy Requirements. PhD thesis,
Swiss Federal Institute of Technology (EPFL), 2002.

[14] M. C. Silaghi and B. Faltings. Parallel proposals in asynchronous search. Technical Report
01/#371, EPFL, August 2001. http://liawww.epfl.ch/cgi-bin/Pubs/recherche.

[15] M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction.Artificial Intelligence, 161:1-2:25–54, January 2005.

[16] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.Arti-
ficial Intelligence, 81:155 – 181, 1996.

[17] G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps). InConstraint Processing-96, pages 561–2, New Hamphshire,
October 1996.

[18] M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review.Au-
tonomous Agents & Multi-Agent Sys., 3:198–212, 2000.

[19] M. Yokoo, K. Hirayama, and K. Sycara. The phase transition in distributed constraint
satisfaction problems: First results. InProc. CP-2000, pages 515–519, Singapore, 2000.

[20] R. Zivan and A. Meisels. Parallel backtrack search on discsps. InProc. Workshop on
Distributed Constraint Reasoning DCR-02, Bologna, July 2002.

[21] R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. InProc. 1st
European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.

[22] R. Zivan and A. Meisels. Concurrent backtrack search for discsps. InProc. FLAIRS-04,
pages 776–81, Maiami Florida, May 2004.

[23] R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csps. InCP-
2004, pages 782–7, Toronto, 2004.

27


