Message delay and DisCSP search algorithms

Roie Zivan and Amnon Meisels
{zivanr,an} @cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) are composed
of agents, each holding its own variables, that are connected by constraints to vari-
ables of other agents. Due to the distributed nature of the problem, message delay
can have unexpected effects on the behavior of distributed search algorithms on
DisCSPs. This has been recently shown in experimental studies of asynchronous
backtracking algorithms [1, 15].

To evaluate the impact of message delay on the run of DisCSP search algorithms,
a model for distributed performance measures is presented. The model counts the
number of non concurrent constraints checksarrive at a solution, as a non
concurrent measure of distributed computation. A simpler version measures dis-
tributed computation cost by the non-concurrent number of steps of computation.
An algorithm for computing these distributed measures of computational effort is
described. The realization of the model for measuring performance of distributed
search algorithms is a simulator which includes the cost of message delays. Two
families of distributed search algorithms on DisCSPs are investigated. Algorithms
that run a single search process, and multiple search processes algorithms. The
two families of algorithms are described and associated with existing algorithms.
The performance of three representative algorithms of these two families is mea-
sured on randomly generated instances of DisCSPs with delayed messages. The
delay of messages is found to have a strong negative effect on single search pro-
cess algorithms, whether synchronous or asynchronous. Multi search process al-
gorithms, on the other hand, are affected very lightly by message delay.

Key words: Distributed Constraint Satisfaction, Search, Distributed Al.

1 Introduction

Distributed constraints satisfaction probleniCSR) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf. [18,
17]). Agents check the value assignments to their variables for local consistency and
exchange messages among them, to check consistency of their proposed assignments
against constraints with variables that belong to different agents [18, 2].

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - run time, which measures the com-
putational effort and network load [8]. The time performance of search algorithms on
DisCSPs has traditionally been measured by the number of computation cycles or steps
(cf. [18]). In order to take into account the effort an agent makes during its local assign-
ment the computational effort can be measured by the number of constraints checks that
agents perform. However, care must be taken to measumnetheoncurrentonstraints
checks. In other words, count computational effort of concurrently running agelyts
onceduring each concurrent running instance ([9, 13]). Measuring the network load
poses a much simpler problem. Network load is generally measured by counting the
total number of messages sent during search [8].

The first attempts to compare run times of distributed search algorithms on DisC-
SPs used a synchronous simulator and instantaneous message arrival. During one step
of computation (cycle) of the simulator all messages of all agents are delivered and
all resulting computations by the receiving agents are completed [18]. The number of
these synchronous steps of computation in a standard simulator served to measure the
non-concurrent run-time of a DisCSP algorithm [18]. It is clear that the comparison
of asynchronous search algorithms by synchronizing them to run on a simulator is not
satisfactory. In fact, comparing concurrent run-times of distributed computations must
involve some type of asynchronous time considerations [7, 9].

The need to define a non-concurrent measure of time performance arises even for an
optimal communication network, in which messages arrive with no delay. It turns out
that for ideal communication networks one can use the number of non-concurrent con-
straints checks (NCCCs), for an implementation independent measure of non-concurrent
run time [9]. When messages are not instantaneous, the problem of measuring dis-
tributed performance becomes more complex. On realistic networks, in which there are
variant message delays, the time of run cannot be measured in steps of computation.
Take for example Synchronous Backtrackirfy3(1") [18]. Agents inSBT perform
their assignments one after the other, in a fixed order, simulating a simple backtrack
algorithm. Since all agents are completely synchronized and no two agents compute
concurrently, the number of computational steps is not affected by message delays.
However, the effect on the run time of the algorithm is completely cumulative (delaying
each and every step) and is thus large (see section 6 for details).

The present paper proposes a general method for measuring run time of distributed
search algorithms on DisCSPs. The method is based on standard methods of asyn-
chronous measures of clock rates in distributed computation [7] and uses constraints
checks as a logical time unit [9]. In order to evaluate the impact of message delays
on DisCSP search algorithms, we presenaagnchronous Message Delay Simulator
(AM DS) which measures the logical time of the algorithm run. Th&/ DS mea-
sures run time in non-concurrent steps of computation or in non-concurrent constraints
checks and simulates message delays accordinglyAThé®.S and its underlying asyn-
chronous measuring algorithm for comparing concurrent running times is described in
detail in section 3. The validity of tha M DS’ counting algorithm, to measure concur-
rent logical time, is proved in section 4. It can simulate systems with different types of

message delays. From fixed message delays, through random message delays, to sys-
tems in which the length of the delay of each message is dependent on the current load
of the network. The delay is measured in non-concurrent computation steps (or non-
concurrent constraints checks). The final logical time that is reported as the cost of the
algorithm run, includes steps of computation which were actually performed by some
agent, and computational steps which were added as message delay simulation while
no computation step was performed concurrently (see section 3).

The AM DS presented in section 3 enables a deeper exploration of the behavior
of different search algorithms for DisCSPs on systems with different message delays.
Message delays emphasize properties of families of algorithms which are not appar-
ent when the algorithms are run in a system with perfect communication. Experimental
evidence for such behavior was found recently for asynchronous backtracking algo-
rithms [1, 15]. The study of [1] measured run times on a multi-machine implementation
of the compared algorithms. While serving as a first attempt to study the impact of
communication delays on DisCSP algorithms, such an implementation does not enable
simple duplication of experiments, for diverse algorithms and measures, as does the
present well-defined simulation algorithm.

The present study of the behavior of distributed search algorithms on DisCSPs uses
a selected set of three very differePtisCSP algorithms. All search algorithms on
DisCSPs can be divided into two families. Single search process algorithms (SPASs)
and concurrent(multiple) searchprocess algorithm@CSAs) The only former exper-
imental study of the performance of DisCSP algorithms compared two asynchronous
single search algorithms [1].

The state of single process algorithms is defined Bingle tuple of assignments
one for each agent. When this set of assignments is complete (containing assignments
to all variables of all agents) and consistent, the SPA stops and reports a solution. A sim-
ple representation for the state of awynchronousSPA, like SBT [18] or CBJ [21],
is a data structure that holds tlearrent partial assignmentf the search ¢ PA).
Single search process algorithms can be asynchronoasyhchronousacktracking
(ABT) [18, 2], each agent holds its view of the current assignments of other agents in
a singleAgent_view. When all agents are idle, allgent_Views are consistent and a
solution is reported [18, 2].

In concurrent search, multiple concurrent processes perform search on non inter-
secting parts of the global search space of a DisCSP ([14, 20, 6]). All agents.$a
participate in every search process, since each agent holds some variables of the search
space. Each agent holds the current domains of its variables, for each of the search
processes. Messages of CSAs carry ftigs of their related search process and the
agents use the corresponding current domains for consistent assignments. The concur-
rent backtracking algorithn{oncBT), distributes among agents a dynamically chang-
ing number of search processes [22]. Agents generate and terminate search processes
dynamically during the run of th€oncBT algorithm [22]. The concurrent dynamic
backtracking ConcD B) algorithm incorporates dynamic backtracking to the concur-
rent performing search processes. As a result, one search procedure can reveal a dead
end of another concurrent search procedure and terminate it [23].

In interleaved asynchronous backtracking, agents participate in multiple processes
of asynchronous backtracking. Each agent keeps a sepiyate_view for each search
process il DI BT [6]. The number of search processes is fixed by the first agent. The
performance of concurrent asynchronous backtracking [14, 6] was tested and found to
be ineffective for more than two concurrent search processes [6].

The plan of the paper is as follows. Distributed constraint satisfaction problems
(DisCSPs) are presented in section 2. A detailed introduction of the simulator that is
used in our experiments, and of the method of evaluating the run time«¥'S P al-
gorithms in the presence of message delays, is presented in section 3. Section 4 contains
a proof of the validity of the simulating algorithm. section 5 presents the two families
of DisCSP search algorithms - single process (SPAs) and concurrent search (CSAS).
This is followed by a detailed description of the compared algorithms - synchronous
SPA (CB.J), asynchronous backtrackingl 87°), and concurrent searcld’¢ncDB).

The first two algorithms have appeared in different versions in the literature and the
compared versions are the most up to date. Synchronous BT uses backjumping [21, 3]
and asynchronous BT resolv@&goods [2]. The representative concurrent search al-
gorithm isConcD B which was found to perform best in a recent study [23]. Section 6
presents extensive experimental results, comparing all three algorithms on randomly
generated)isC'S Ps with different types of message delays. A discussion of the per-
formance and advantages of the families of algorithms, on diffdpént’S P instances

and communication networks, is presented in section 7. Our conclusions are in sec-
tion 8.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSB is composed of a set df agentsA;, A, ..., Ax. Each agent4; contains a
set of constrained variables;, , X;,, ..., X;, . Constraints orelations R are subsets
of the Cartesian product of the domains of the constrained variables [Bindxy
constraint R;; between any two variable¥; and X; is defined asR;; C D; x D;.
In a distributed constraint satisfaction probl&@isCSRE the agents are connected by
constraints between variables that belong to different agents (cf. [18, 17]). In addition,
each agent has a set of constrained variables, iceahconstraint network

An assignment (or a label) is a pair var, val >, wherevar is a variable of some
agent andal is a value fromwar’s domain that is assigned to it. partial assignment
(or a compound label) is a set of assignments of values to a set of varialdekition
to aDisCSPis an assignment that includes all variables of all agents, that is consistent
with all constraints. Following all former work oRisCSP, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents [18].

The delay in delivering a message is assumed to be finite [18]. One simple protocol
for checking constraints, that appears in many distributed search algorithms, is to send a
proposed assignmert var, val >, of one agent to another agent. The receiving agent
checks the compatibility of the proposed assignment with its own assignments and with

the domains of its variables and returns a message that either acknowledges or rejects
the proposed assignment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [18, 2].

1. All agents hold exactly one variable.

2. The amount of time that passes between the sending of a message to its reception
is finite.

3. Messages sent by age#i to agent4; are received byl; in the order they were
sent.

4. Every agent can access the constraints in which it is involved and check consistency
against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents adlava ThreadsThreads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Non-concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [7, 9]. Every agent holds a counter of computation steps
which it increments each time it performs a step. Every message carries the value of the
sending agent’s counter. When an agent receives a message it updates its counter to the
largest value between its own counter and the counter value carried by the message. By
reporting the cost of the search as the largest counter held by some agent at the end of
the search, a non-concurrent measure of search effort is achieved (see [7]).

On systems with message delays, the situation is different. To introduce the prob-
lems of counting in the presence of message delays, let us start with the simplest pos-
sible algorithm. Synchronous backtrackinggT") performs assignments sequentially,
one by one and no two assignments are performed concurrently. Consequently, the ef-
fect of message delay is very clear. The number of computation steps is not affected by
message delay and the delay in every step of computation is the delay on the message
that triggered it. Therefore, the total time of the algorithm run can be calculated as the
total computation time, plus the total delay time of messages. In the presence of con-
current computation, the time of message delays must be added to the run-time of the
algorithmonly if no computation was performed concurrenily achieve this goal, the
simulator counts message delays in terms of computation steps and adds them to the
accumulated run-time. Such additions are performed only for instances when no com-
putation is performed. In other words, when the delay of a message causes all agents to
wait, performing no computation.

In order to simulate message delays, all messages are passed by a dédicdted
thread. The mailer holds a counter of non-concurrent computation steps performed by

— upon receiving messagensg:

. LTC « max(LTC, msg.LTC)

. delay« choose_delay

. msgdelivery_time « msg.LTC + delay

. outgoing_queue.add(msg)

. deliver_messages

— when there are no incoming messages and all agents are idle
1. LTC « outgoing_queue.firstmsg.LTC
2. deliver_messages

— deliver_messages
1. foreach (message m in outgoing queue)
2. if (m.delivery_time < LTC)
3. deliver(m)

A

ab~wN

Fig. 1. The Mailer algorithm

agents in the system. This counter represents the logical time of the system and we re-
fer to it as thelLogical Time Counte(LT'C). Every message delivered by the mailer
to an agent, carries thel'C value of its delivery to the receiving agent. An agent that
receives a message updates its counter to the maximum value between the received
LTC and its own value. Next, it performs the computation step, and sends its outgoing
messages with the value of its counter, incremented by 1. The same mechanism can
be used for computing computational effort, by counting non-concurrent constraints
checks. Agents add to the counter values in outgoing messages the number of con-
straints checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrent computation steps.
To do so it uses thé&T'C, according to the algorithm presented in figure 1. Let us go
over the details of thél{ailer algorithm, in order to understand the measurements
performed by the simulator during run time.

When the mailer receives a message, it first checks itthi€' value that is carried
by the message is larger than its own value. If so, it increments the value 6fftbhe
(line 1). Inline 2 a delay for the message (in number of steps) is selected. Here, different
types of selection mechanisms can be used, from fixed delays, through random delays,
to delays that depend on the actual load of the communication network. To achieve
delays that simulate dependency on network load, for example, one can assign message
delays that are proportional to the size of the outgoing message queue.

Each message is assignededivery_time which is the sum of the value of the
message'd.T'C and the selected delay (in steps), and placed irvtheoing_queue
(lines 3,4). Theutgoing_queue is a priority queue in which the messages are sorted by
delivery_time, so that the first message is the message with the lolwgsiery _time.
In order to preserve the third assumption from section 2, messages fromAagent
agentA; cannot be placed in the outgoing queue before messages which are already
in the outgoing queue which were also sent frdmto A;. This property is essential
to asynchronous backtracking which is not correct without it (cf. [2]). The last line of
the Mailer’s code calls methodeliver_messages, which delivers all messages with

delivery_time less or equal to the mailer's currehfl’C value, to their destination
agents.

When there are no incoming messages, and all agents are idleiftii@ng_queue
is not empty (otherwise the system is idle and a solution has been found) the mailer in-
creases the value of tHel'C' to the value of thelelivery_time of the first message in
the outgoing queue and callgliver_messages. This is a crucial step of the simula-
tion algorithm. Consider the run of a synchronous search algorithmSyaochronous
Backtracking(SBT') [18], every delay needs the mechanism of updating the Mailer's
LTC (line 1 of the second function of the code in figure 1). This is because only one
agent is computing at any given instance, in synchronous backtrack search.

The non-concurrent run time reported by the algorithm, is the lay@st value
that is held by any agent at the end of the algorithm’s run. By incrementing i@
only when messages carbyl’C's with values larger than the mailers’C value, steps
that were performed concurrently are not counted twice. This is an extension of Lam-
port’s logical clocks algorithm [7], as proposed for DisCSPs by [9], and extended here
for message delays.

A similar description holds for evaluating the algorithm run in non-concurrent con-
straints checks. In this case the agents need to extend the value aiIr@g by the
number of constraints checks they actually performed in each step. This enables a con-
current performance measure that incorporates the computational cost of the local step,
which might be different in different algorithms. It also enables to evaluate algorithms
in which agents perform computation which is not triggered or followed by a message.

4 Validity of the AM DS

The validity of the proposed simulation algorithm can be established in two steps. First,
its correspondence to runs ofSynchronous (cycle-counting) Simulatsrpresented.
Understanding the nature of this correspondence, enables to show that a corresponding
synchronous cycle simulator cannot measure concurrent delayed steps ddd ih&

iS hecessary.

In a Synchronous Cycle Simulat¢8CS) [18], each agent can read all messages
that were sent to it in the previous cycle and perform a single computation step. The
computation is followed by the sending of messages (which will be received in the next
cycle). Agents can be idle in some cycles, if they do not receive a message which trig-
gers a computation step. The cost of the algorithm run, is the number of synchronous
cycles performed until a solution is found or a non solution is declared (see [18]). Mes-
sage delay can be simulated in such a synchronous simulator by delivering messages to
agents several cycles after they were sent. Our first step is to show the correspondence
of AMDS and anSC'S.

Theorem 1. Any run of AM DS can be simulated by 8ynchronous Cycle Simulator
(SCS). Each cycle; of theSC'S corresponds to ai.’7'C' value of AM DS.

Proof. Every message: sent by an agend; to agent4;, using theAM DS, can be
assigned a valué which is the largest value between th&'C' carried bym in the
AMDS run and the value of théT'C' held by A; when it receivesn. Running a

Synchronous Cycle Simulat¢ésC'S) and assigning each messagewith the value

d calculated as described above, the message can be delivedgdnacycle d. The
outcome of this specia#CS is that every agent in every cycle receives the exact
messages as the agents in the correspondling) S and the histories of all these mes-
sages are equivalent. This means that agents have the same knowledge about the other
agents as the agents performing the corresponding steps.iiwhe.S run. Assuming

the algorithm is deterministic, each agent will perform the same computation and send
the same messages. If the algorithm includes random choices the run can be simulated
by recordingA M DS choices and forcing the same choice in the synchronous simulator
run.O

The theorem demonstrates that for measuring the number of steps of computation,
the asynchronous simulator is equivalent to a stand&rd that does not wait for
all agentsto complete their computation in a given cycle, in order to move to the next
cycle. Message delays are simulated simply bys6kS delivering messages in delayed
cycles.

The validity and importance of the asynchronous simulator can now be understood.
Consider the important case where computational effort needs to be measured, in terms
of constraints checks for example. At each cycle agents perform different amounts of
computation, depending on the algorithm, on the arrival of messages, et&(Thie
has no way to “guess” the amount of computation performed by each agent in any
given step or cycle. It therefore cannot deliver the resulting message in the correct cycle
(one that matches the correct amount of computation and waiting). The natural way
to incorporate the computational cost into the performance measure is to "clock” the
simulator by CCs (for example). But this is equivalent to usingafié D.S as proposed
in section 3.

5 Families of DisCSP search algorithms

Algorithms for solving DisCSPs can be divided into two families: single search process
algorithms (SPAs) and multiple search process algorithms (MPAs). The general model
of DisCSPs has variables owned by agents, who assign them values. The distinction
between the two families of algorithms is in the number of concurrent assignments that
agents maintain. In SPAs each agent can have no more than one assignment to its vari-
able, at any single instance. In multiple process algorithms (MPAs), on the other hand,
agents maintain multiple concurrent assignments to their variable. To give an example,
synchronous backtracking (SBT) is a single process algorithm. During search, a single
CP A carries the assignments of some of the agents. The other agents which are waiting
for the message with assignments to arrive, are still unassigned. Therefore, each agent,
in every step of the search, has either one assignment or none [18]. Asynchronous back-
tracking (ABT) is also a SPA. All the variables in ABT have exactly one assignment at
each instant of its run [2].

To maintain two concurrent assignments in a DiSCSP, think of the first agent as
assigning two of its values to its variable. It then puts each assignment on a different
message and initializes a backtracking process for each one. Each backtrack process

traverses all agents, not necessarily at the same order, to accumulate assignments to all
variables of all agents. All agents receive eventually two messages. One message has the
first assignment for the first agent and the other has the second assignment that the first
agent performed. Agents that receive a message either add their compatible assignment
to the partial assignment already on the message, or backtrack by sending the message
back. All agents use a different current domain for each of the messages. It is easy to
see that all agents react to the two messages in exactly the same way, assigning their
variable on it or backtracking. This process stops when one of the messages accumulates
a complete assignment and reports a solution, or when both messages return to the first
agent and find no more values to assign. In this case the two-process algorithm reports
failure.

Several single process DisCSP search algorithms have appeared in the literature in
the last decade. Synchronous algorithms like synchronous backtrack (SBT) and conflict-
based backjumping (CBJ) [18, 21]. Asynchronous algorithms like asynchronous back-
tracking ABT), asynchronous aggregations seardl §) and asynchronous forward-
checking AFC) [15, 2, 10]. In contrast, only few multiple process DisCSP search al-
gorithms appear in the literature [14, 6, 22]. The concurrent dynamic backtracking algo-
rithm (ConcD B), with dynamic splitting of search processes, will be the representative
of this family in the present stud{.oncD B incorporates dynamic splitting, generat-
ing a variable number of search processes. Furthermore, the search processes cooporate
inorder to detect and terminate invalid active search processes [23]. Multiple search pro-
cess versions of asynchronous backtracking were found not to improve for more than 2
concurrent processes [6]

In the following subsections three representative algorithms of the above two fam-
ilies are described. Two single-process algorithms, one synchronous (CBJ) and one
asynchronous (ABT), and one multiple-process algorithm - concurrent dynamic back-
tracking ConcD B). The performance of the three representative algorithms is evalu-
ated in section 6 and the impact of delayed messages on their performance is presented.
The impact of delayed messages on each of the algorithms is found to be related to the
properties of the algorithm’s family and will be explained in the discussion (Section 7).

5.1 Conflict Based Backjumping

The Synchronous Backtrack algorithi$iZ87") [18], is a distributed version of chrono-
logical backtrack [11].5BT has a total order among all agents. Agents exchange a
partial solution that we terrCurrent Partial Assignmen(C P A) which carries a con-
sistent tuple of the assignments of the agents it passed so far. The first agent initializes
the search by creating@P A and assigning its variable on it. Every agent that receives
the C'P A tries to assign its variable without violating constraints with the assignments
on theC PA. If the agent succeeds to find such an assignment to its variable, it appends
the assignment to the tuple on th&” A and sends it to the next agent. Agents that
cannot extend the consistent assignment orttkel, send the” P A back to the previ-

ous agent to change its assignment, thus perform a chronological backtrack. An agent
that receives & P A in a backtrack message removes the assignment of its variable
and tries to reassign it with a consistent value. The algorithm ends successfully if the

— CBJ
1.done— false
2if(firstagent)
3. CPA < createCPA
4. assignCPA
5. while(not done)
6. switchmsg.type
7 stop.done«~ true
8 backtrack: removelastassignment

9. assignCPA
10. CP A:refreshdomain
11. assignCPA

— assignCPA:

1. CPA+— assignlocal
if (is_consistent(CPA))
if (is_full(CPA))
report_solution
stop
else
send(CPA, next)
else
backtrack
acktrack:
. CPA— resolve_nogoods
if (is_empty(CPA))
CPA«— no_solution
stop
. else
sendbacktrack, CPA.last_asignee)
— removelast.assignment
1. store(CPA.lasassignment,CPA)
2. CPA— {last_sent_CPA} \ {last_assignment}
3. currentdomain— {current_domain} \ {last_assignment}
— refresh.domain:
1. for each storedNogood sn
2. if(not consistent(CPAn))
3. currentdomain«— {current_domain} U {sn.last_assignment}
— stop.
1. send(stopgll_other_agents)
2. done— true

PUAWNPTO®ND U A WN

Fig. 2. The Distributed CBJ algorithm

last agent manages to find a consistent assignment for its variable. The algorithm ends
unsuccessfully if the first agent encounters an empty domain [18].

The synchronous (distributed) version of Conflict Based Backjumping.[) im-
proves on simple synchronous backtraSiB(I") by using a method based on dynamic
backtracking [5]. In the improved version, when an agent removes a value from its

10

variable’s domain, it stores the eliminating explanatidfvgood), i.e. the subset of the

C P A that caused the removal. When a backtrack operation is performed, the agent re-
solves itsN ogoods creating a conflict set which is used to determine the culprit agent to
which the backtrack message will be sent. The resulting synchronous algorithm has the
backjumping property (i.eC'BJ) [5]. When theC' P A is received again, values whose
eliminating Nogoods are no longer consistent with the partial assignment oitRel

are returned to the agents’ domain.

The C'BJ algorithm is presented in figure 2. In the main function, the first agent
initializes the search by creating’& A, assigning and sending it by using the function
assign_ CPA (lines 2 - 4). Lines 5 to 10 describe how agents respond to one of three
types of messages:

1. stop: indicating that the search has ended.
2. CPA: carrying a CPA forward.
3. backtrack: carrying a CPA backwards, with an inconsistent assignment.

Upon the reception of a stop message the agent simply stops the search by exiting the
loop. When & P A moving forward is received, the agent first calls functiefiresh_domain.
This returns to the agent@irrent_domain values whose explanation is not included

in the received CPA. Next, the agent calls functierign_C P A, attempting to assign

its variable.

When abacktrack message is received, the agent calls functionove_last_assignment
which removes the value assignment of the agent in the inconsiSteat from its
current_domain. It then stores it with the receivedP A in the form of aNogood.
Finally, it replaces the” P A with a copy of the lasC PA it sent, which holds the
assignment it will try to extend and send forward. This takes place in the function
assign_.C P A that is called immediately afteremove_last_assignment. When the
agent fails to extend & PA it calls functionbacktrackwhose first line resolves the
inconsistent subset of the CPA (line 1). Then, a check is made whethé¥ dheod
created is empty which will indicate thBisC'S P has no solution (lines 2-4). If the
Nogood found is not empty, it is sent to the agent with the lowest priority whose assign-
ment is included in thé&Vogood (lines 6). This is standard dynamic backtracking [5].

5.2 Asynchronous Backtracking

The Asynchronous Backtrack algorithm (ABT) was presented in several versions

over the last decade and is described here in accordance with the more recent papers [18,
2]. In the ABT algorithm, agents hold an assignment for their variables at all times,
which is consistent with their view of the state of the system (i.e. thgint_view).

When the agent cannot find an assignment consistent withyitat_vicw, it changes

its view by eliminating a conflicting assignment from ilgient_view data structure

and sends back & ogood.

The ABT algorithm [18], has a total order of priorities among agents. Agents hold a
data structure called gent_view which contains the most recent assignments received
from agents with higher priority. The algorithm starts by each agent assigning its vari-
able, and sending the assignment to neighboring agents with lower priority. When an
agent receives a message containing an assignment:{amessage [18]), it updates

11

— when received(ok?, (z;,d;)) do
1. add(z;, d;) to agent_view;
2. checkagentview;end.do;

— when received(nogood z ;, nogood) do

add nogood to nogood list;

. whennogood contains an agent; that is not its neighbodo
requestry, to addx; as a neighbor,
and addx, di) to agent_view; end_do;

old_value «— current_value; check agentview;

. whenold_value = current_value do

send ¢k?, (x;, current_value)) to z; ; end- do; end-do;

— procedureheck agentview
1. whenagent_view andcurrent_value are not consistertdo
2. if novalue inD; is consistent witltugent_view then backtrack;
3. elseselectd € D; whereagent_view andd are consistent;
4, current_value «— d,
5. send(ok?,(x;, d)) to low_priority_neighbors; end.if;end.do;

— procedurébacktrack

. nogood «— resolve_Nogoods;

. whennogood is an empty setlo

broadcast to other agents that there is no solution;

terminate this algorithmend_do;

. select(z;, d;) wherez; has the lowest priority in nogood;

. send(nogood z;, nogood) to x;;

. remove(z;, d;) from agent_view; end_do;

. checkagentview

NoghrowdhRE

ONOUAWNE

Fig. 3. The ABT algorithm with full Nogood recording

its Agent_view with the received assignment and if needed, replaces its own assign-
ment, to achieve consistency. Agents that reassign their variable, inform their lower
priority neighbors by sending theot? messages. Agents that cannot find a consistent
assignment, send the inconsistent tuple in thiejent_view in a backtrack message

(a Nogood message [18]). Th&/ogood is sent to the lowest priority agent in the in-
consistent tuple, and its assignment is removed from theimt_view. Every agent

that sends d@vVogood message, makes another attempt to assign its variable with an
assignment consistent with its updatédgent_view.

Agents that receive & ogood, check its relevance against the content of their
Agent_view. If the Nogood is relevant, the agent stores it and tries to find a consis-
tent assignment. In any case, if the agent receivingbheood keeps its assignment,
it informs the Nogood sender by re-sending it ait?” message with its assignment. An
agentA; which receives avogood containing an assignment of agefif which is not
included in itsAgent_view, adds the assignment df; to it's Agent_view and sends a
message tol; asking it to add a link between them. In other words,is requested to
inform A; about all assignment changes it performs in the future [2, 18].

12

The performance oA BT can be strongly improved by requiring agents to read
all messages they receive before performing computation [18]. A formal protocol for
such an algorithm was not published. The idea is not to reassign the variable until all
the messages in the agent’s 'mailbox’ are read and4hent view is updated. This
technique was found to improve the performanced@T on the harder instances of
randomly generated DisCSPs by a factor of 4 [21]. However, this property makes the
efficiency of ABT dependent on the contents of the agent’'s mailbox in each step, i.e.
on message delays (see section 6). The consistency dijthe _view held by an agent
with the actual state of the system before it begins the assignment attempt is affected
directly by the number and relevance of the messages it received up to this step.

Another improvement to the performance 48T can be achieved by using the
method for resolving inconsistent subsets of theent_view, based on methods of
dynamic backtracking. A version of BT that uses this method was presented in [2].

In [21] the improvement oft BT using this method ovet BT sending its fullAgent_view

as alNogood was found to be minor. In all the experiments in this paper a version of
ABT which includes both of the above improvements is used. Agents read all incoming
messages that were received before performing computatioN aggbds are resolved,
using the dynamic backtracking method [2].

The ABT algorithm is presented in figure 3 [18]. The first procedure is performed
when ark? message is received. The agent adds the received assignmenigeritsview
and calls procedureheck_agent_view.

The second procedure is performed wheiVagood is received. TheVogood is
stored (line 1), and a check is made whether it contains an assignment of a non neigh-
boring agent. If so, the agent sends a message to the unlinked agent in order to establish
a link between them and adds its assignment td itsnt_view (lines 2-4). Before call-
ing proceduresheck_agent_view, the current value is stored (line 5). If for any reason
the current value remains the same after callihgek_agent_view, anok? message
carrying this assignment is sent to the agent from whomNlgood was received
(lines 6,7).

In procedureheckagentviewif the current value is not consistent with thgent_view
the agent searches its domain for a consistent value. If it does not find one, it calls pro-
cedurebacktrack (line 2). If there is a consistent value in its domain, it is placed as the
current_value andok? messages are sent through all outgoing links (lines 3-5).

In procedurebacktrack the agent resolves its storédogoods and chooses the
Nogood to be sent (line 1). If theVogood selected is empty, the algorithm is termi-
nated unsuccessfully (lines 2-4). In other cases the agent sene¢faed to the agent
with the lowest priority whose assignment is included in f¥iegood, removes that
assignment from thd gent _view and callscheck_agent_view.

5.3 Concurrent Dynamic Backtracking

In order to present concurrent dynamic backtracking a simpler more general version,
ConcBTis first presented, followed by the changes in order to add dynamic backtrack-
ing to the algorithm. Th& oncBT algorithm [22] performs multiple concurrent back-

track searches on disjoint parts of thessCSPsearch-space. Each agent holds the data
relevant to its state on each sub-search-space in a separate data structure which is termed

13

Search Process (SPAgents in theC'oncBT algorithm pass their assignments to other
agents on £PA (Current Partial Assignment) data structure. EEEtA represents one

search process, and holds the agents current assignments in the corresponding search
process. An agent that receive€RA tries to assign its local variable with values that

are consistent with the assignments on @A using the current domain in tHgP

related to the receive@PA The uniqueness of thePAfor every search space ensures

that assignments are not done concurrently in a single sub-search-space [22].

Exhaustive search processes which scan heavily backtracked search-spaces, can be
split dynamically. Each agent can generate a sétBfAs that split the search space of
a C' P A that passed through that agent, by splitting the domain of its variable. Agents
can perform splits independently and keep the resulting data strucBrRaspivately.

All other agents need not be aware of the split, they process Allis in exactly the

same manner (see [22] for a detailed explanati@®As are created either by the Ini-
tializing Agent (A) at the beginning of the algorithm run, or dynamically by any agent
that splits an active search-space during the algorithm run. A heuristic of counting the
number of times agents pass tbBAin a sub-search-space (without finding a solution),

is used to determine the need for re-splitting of that sub-search-space. This generates a
mechanism of load balancing, creating more search processes on heavily backtracked
search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment in the search-space corresponding to the partial assignment@PAthe
Agents that have performed dynamic splitting, have to collect all of the retuéhings,
of the relevantS P, before performing a backtrack operation. In the description of the
ConcBT algorithm the following terminology is used:

— CPA_generator: EveryCPAcarries thdD of the agent that created it.

— steps_limit: the number of steps (from one agent to the next) that will trigger a
split, if the CPAdoes not find a solution, or return to its generator.

— split_set: the set ofSP-1Ds, stored in eacly P, including thel Ds of the active
S Ps that were split from the&S P by the agent holding theplit_set.

— origin_SP: an agent that performs a dynamic split, holds in each of the $ies/
the ID of the SPit was split from (i.e. oforigin_SP). An analogous definition
holds fororigin_C' P A. Theorigin_S P of anSPthat was not created in a dynamic
split operation is its owtD.

The messages exchanged by agentSincBT are:

CPA - aregular CPA message.

backtrack - a CPA sent in a backtrack operation.

stop- a message indicating the end of the search.

split - a message that is sent in order to trigger a split operation. Contaiii3 tife
the SPto be split.

The ConcBT algorithm is presented in Figure 4 and the detailed description of its
different functions is as follows.

— The main functionConcBT, initializes the search if it is run by thiaitializing
agent (IA) It initializes the algorithm by creating multipgPs assigning eacl P

14

— ConcBT:

1. done— false
2. if(IA) theninitialize_SPs
3. while(not done)
switch msg.type
split: performsplit
stop: done«+ true
CPA: receiveCPA
backtrack: receiveCPA
itialize _SPs
. for i < 1todomain_size
createSP(i)
SP[i].domain— domain.val[i]
CPA < createCPA(i)
assign CPA
receive CPA:
1. CPA— msg.CPA
2. if(first.received(CPAID))
createSP(CPAID)
if(CPA_generator = ID)
5 CPAsteps— 0
6. else
7. CPA_steps ++
8. if(CPA_steps = steps_limit)
9. sendgplit, CPA_generator)
10. if(msg.type Dacktrack)
11. removelastassignment
12. assign . CPA
assignCPA:
1. CPA~ assignlocal
if (is_consistent(CPA))
if (is_full(CPA))
report_solution
stop
else
send(CPA, nexagent)
else
backtrack

©oNo A

>

agrwdPES

hw

CoNOO~WDN

— backtrack:
1. delete(curren€PA fromorigin_split_set)
2. if(origin_split_set is_empty)

if (I1A)
CPA«— no_solution
if (no_active CPAS)

reportno_solution
stop

else
sendbacktrack, last_assignee)
10. else
11. mark_fail(current_.CPA)

— perform_split:
1. if(not_backtracked(C P A))

var«— select_split_var

if (var is.not null)
createsplit. SP(var)
createsplit CPA(SRID)
add(SPD to origin_split_set)
assign_ CPA

else
send§plit, next_agent)

©oNO GO~

©oNOO WD

— stop
1. send(stopgli_other_agents)
2. done< true

Fig. 4. The ConcBT algorithm

with one of the first variable’s values. After initialization, it loops forever, waiting
for messages to arrive.

— receiveCPA first checks if the agent holds@P with the ID of thecurrent CPA
and if not, creates a ne®P (lines 2,3). If theC' P A is received by its generator,
it changes the value of the steps count8PA_steps) to zero (lines 4,5). This
prevents unnecessary splitting. Otherwise, it checks whetheZRaehas reached
the steps_limit and a split must be initialized (lines 7-9). Before assigning the
CPA a check is made whether tli¢P A was received in &acktrack, if so the

15

previous assignment of the agent which is the last assignment made @#thés
removed, beforessign_C PA is called (lines 10-11).

— assignCPA tries to find an assignment for the local variables of the agent, which
is consistent with the assignments on therent_C P A. If it succeeds, the agent
sends theCPAto the selectedhert_agent (line 7). If not, it calls thebacktrack
method (line 9).

— Thebacktrack method is called when a consistent assignment cannot be found in a
SP. Since a split might have been performed by the current agent, a check is made,
whether all theCPAs that were split from theurrent_C' P A have also failed (line
2). When all splitC' P As have returned unsuccessfully, a backtrack message is sent
carrying the ID of theorigin_ C P A. In case of anlA, theorigin_SPis marked as
a failure (lines 3-4). If all othelSPs are marked as failures, the search is ended
unsuccessfully (line 6).

— Theperform _split method tries to find in th&Pspecified in thesplit_message, a
variable with a non-empty curremtomain. It first checks that thé P A to be split
has not been sent back already, in a backtrack message (line 1). If it does not find a
variable for splitting, it sends a splihessage taext_agent (lines 8-9). If it finds
a variable to split, it creates a né&sPandC P A, and callsassignCPAto initialize
the new search (lines 3-5). ThB of the generated’ P A is added to the split set
of the dividedS P’s origin_SP (line 6).

The best version of concurrent backtracking search uses methods of backjumping
that are based obynamic Backtracking5]. Each agent that removes a value from its
current domain stores the partial assignment that caused the removal of the value. This
stored partial assignment is calledeliminating explanatioroy [5]. When the current
domain of an agent empties, the agent constructs a backtrack message from the union
of all assignments in its stored removal explanations. The union of all removal explana-
tions is an inconsistent partial assignment, dlagood[5, 18]. The backtrack message
is sent to the agent which is the owner of the most recently assigned variable in the
inconsistent partial assignment. This version of concurrent search is Calezlirrent
Dynamic Backtracking (ConcDB)

In concurrent dynamic backtracking, a shblbgoodcan rule out multiple sub-
search-spaces, all of which contain no solution and are thus unsolvable. In order to ter-
minate the corresponding search processes, an agent that receives a backtrack message
performs the following procedure:

— Detect theS P to which the received (backtrack)P A either belongs or was split
from.
— Check if theC' P A corresponding to the detectéd® was split down its path.
— If it was:
e Send arunsolvable message to theextagentof the relatedS P, thus gener-
ating a series of messages along the path oftFed.
e choose a new unique ID for tleé P A received and its relatefiP.
e continue the search using ts&” andC P A with the new ID.
— Check if there are othe¥ Ps which contain the received inconsistent partial assign-
ment (by calling functiorcheck SP9. Send correspondingnsolvable messages
and resume the search on them with new gener@ieds.

16

ConcDB: backtrack:

9. backtrack-msg «—

9. wunsolvable: mark unsolvable(msg.SP) inconsistent_assignment
10. sendfacktrack_msg,

receive CPA: lowest_priority_assignee)

1. CPA~— msg.CPA 11. else

2. if(unsolvable SP) 12. mark_fail(current_CPA)

3. terminate CPA

4. else mark _unsolvablgSP)

mark SP unsolvable

send(unsolvable, SP.nexgent)

for each split. SP in SP.origin.spliset
mark splitSP unsolvable
send(unsolvable, spl§P.nextagent)

14. if(msg.type =acktrack)
15. checkSPs(CPA.inconsisterssignment)
16. lastsentCPAremove_last_assignment
17. CPA < last_sent_ CPA check SPginconsistentassignment)
18. if(SP.splitahead) 1. foreachspin {SPs\ current_.SP}
19. send(unsolvable, SP.neagent) 2. if(sp.contains(inconsisterdssignment))
20. renameSP 3. send(unsolvablep.nextagent)
21. assign CPA 4. lastsentCPAremove_last_assignment
5
6
7

gpLONE

CPA < lastsentCPA
sp.renameSP
assign_.CPA

Fig. 5. Methods for Dynamic Backtracking @foncD B

Theunsolvablemessage used by tli¢oncD B algorithm, is a message not used in
Concurrent Backtracking (ConcBTivhich indicates an unsolvable sub-search-space.
An agent that receives amsolvable message performs the following operations for
the unsolvableés P and each of thé& Ps split from it:

— mark theSP as unsolvable.
— send arunsolvable message which carries the ID of té” to the agent to whom
the related”’ P A was last sent.

The change of ID makes the resumed search process independent of the process
of terminating unsolvable search spaces. If the agents would have resumed the search
using thel D of the originalS P or of the received”’ P A, a race condition would arise
since there is no synchronization between the process of terminating unsolvable search
procedures to the resumed valid search procedure. In such a case, an agent that received
anunsolvable messagright have marked an active search space as unsolvable.

Figure 5 presents the metho@®ncDB, receiveCPA and backtrack that were
changed from the general description@dncurrent Searcln Figure 4, followed by
two additional methods needed for addibgnamic Backtrackingo concurrent search.

Let us look at the differences in code. In methredeive CPA a check is made in lines
3,4 whether theS P related to the receive@ P A is marked unsolvable. In such a case

17

the CPA is not assigned and the relat8d is terminated. For a backtrackingP A

(lines 14-20) a check is made whether there are other SPs which can be declared un-
solvable. This can happen when the head (or prefix) of their partial assignment (their
common head i.e. CHontains the received inconsistent partial assignment. For such

a case, procedureheck SPsis called, which for every sucl§ P found, initiates the
termination of the search process on the unsolvable sub-search-space and resumes the
search with a newly generatédP A. Then a check is made whether th& was split

by agents who received tli¢P A after this agent (line 18). If so, the termination of the
unsolvableS P is initiated by sending annsolvable message. A new ID is assigned to

the received” PA and to its related' P (line 20).

In methodbacktrack, the agent inserts the culprit inconsistent partial assignment
into the backtrack message (line 9) before sending it back in line 10. This is the only
difference from the standard backtrack method in Figure 4.

As described above, methadbark _unsolvableis part of the mechanism for termi-
nating SPs on unsolvable search spaces. The agent mak®ttetated to the message
received, and ang P split from it, as unsolvable and sends unsolvable messages to the
agents to whom the correspondi6g® As were sent.

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by se-
lecting the probability; of a constraint among any pair of variables and the probability
p2, for the occurrence of a violation among two assignments of values to a constrained
pair of variables. Such uniform random constraints networks weériables k values

in each domain, a constraints densityzafand tightnes®., are commonly used in
experimental evaluations of CSP algorithms (cf. [12, 16]). The experiments were con-
ducted on networks with 15 Agents (= 15) and 10 valuesk = 10). Two density
parameters were used, = 0.4 andp; = 0.7. The value ofp; was varied betwee.1

to 0.9. This creates problems that cover a wide range of difficulty, from easy problem
instances to instances that take several CPU minutes to solve. For eveny, paiy iq

the experiments we present the average over 50 randomly generated instances.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of non-concurrent constraint chedkS'C's) [9, 23], to measure
computational cost. This measures the combined path of computation, from beginning
to end, in terms of constrait checks. The other measure used is the communication load,
in the form of the total number of messages sent [8]. In order to evaluate the number of
non-concurrent CCs including message delays, the simulator described in section 3 is
used.

In the first set of experiments the three algorithms are compared without any mes-
sage delay. The results presented in Figures 6 and 8 show that the numbers of non-
concurrent constrait checks that the three algorithms perform are very similar, on sys-
tems with no message delays. ABT performs slightly less stepstiiahandConcD B
performs slightly better thad BT. When it comes to network load, the results in fig-
ures 7 and 9 show that for the harder problem instances, ageAt8Thsend between

18

—+—CBJ
- —ABT
---m--- ConcDBE

NCCCs

01 02 03 04 058 06 07 08 09
p2

Fig. 6. Non-concurrent constraint checks with no message dejays-(0.4)

MSGs

01 02 03 04 05 06 07 08 09
p2

Fig. 7. Total number of messages with no message dejays-(0.4)

4 to 5 timesmore messagdban sent by agents runniigB.J andConcD B. All four
figures: 6, 7, 8 and 9 show clearly the presence of a phase transition ([19]).

In the second set of experiments, messages were delayed randomly for 50-100 non-
concurrent constraint checks (as described in section 3). Figure 10 presents the num-
ber of non concurrent constraint checks performed by the three algorithms running on
sparse DisCSPs with random message delays. The most obvious result of Figure 10 is
thatC' BJ is affected most from message delay. This could have been expected. Since
C BJ performs no concurrent computation the total amount of message delay is added
to the runtime of the algorithm. This gives a large effect on the run-time results. Fig-
ure 11 presents a closer look at the resultsiéfT” and ConcD B in this run. While
ConcDB performed about0% more NCCC's than the number oNCCC'S it per-

19

NCCCs
=
=
=
=
=

01 02 03 04 05 0B 07 0B 09
p?

Fig. 8. Non-concurrent constraint checks with no message dejays-(0.7)

120000 —+—CBJ
100000 - M e —ART
P
6 BO000 - 1 I" \\ ---m-- ConcDB
60000 Y
E i ‘\
40000 - ! N
! \\
20000 Mﬁ
o R
T e o

01 02 03 04 05 06 07 08 09
p2

Fig. 9. Total number of messages with no message dejays=(0.7)

formed with no message delayd BT performesthree times moreVC'CC's than it
does for perfect communication.

Figure 12 presents the total number of messages sent by the three algorithms with
random message delays. It is interesting to see that while the total number of messages
sent byC'BJ andConcD B are not affected by message delay, the number of messages
sent byABT grows by a factor of 2.

Figures 13, 14 and 15 show similar results for denser DisCPs (.7).

The third set of experiments investigates the impact of the size and range of the ran-
dom delays on the different algorithms. The effect of varying the delay size on a sequen-
tial assignment (synchronous) single search algorithm is easy to understand. In order to
investigate the behavior of algorithms which perform concurrent computation, in the

20

500000 - —+CBEJ
500000 -
700000 — - —ABT

600000 ---m-- ConcDB
500000 -
400000 1
300000 -
200000 -
100000 A

o = F—

01 02 03 04 05 06 07 08 09
p2

NCCCs

Fig. 10.Non-concurrent constraint checks with random message delays (0.4)

120000 4

- —ART
100000 - A
P
2 80000 A Y ---m-- ConcDB
s
§ g0000 - A '
13
40000 P Y
! .-
20000 J;__,.-r ‘1““«.
0+l -T-.Jl T T T l_-hl-_-h' 1

01 02 03 04 05 06 07 0B 09
p2

Fig. 11.A closer look at NCCCs performed by ABT and ConcDB, with random message delays
(p1 =0.4)

presence of message delays of different sizes and range, experiments were performed
for the harder problem instances. The algorithms were run with an increasing amount
and range of message delay, on the hardest problem instances (tightress6 for

p1 = 0.4 andpy = 0.4 for p; = 0.7). The impact of random delays on the different
algorithms is presented in Figures 16 and 17. The number of non-concurrent constraint
checks of the single search algorithrm7") grows with the size of message delay. In
contrast, larger delays have a small impact on the number of non-concurrent constraint
checks performed by concurrent sear€fcD B).

21

80000 4 —+—CBJ
70000
B0000
w 20000 -

g 40000
30000

20000 4
10000 -
0+ T

01 02 03 04 05 06 07 0B 09

p2

Fig. 12. Total number of messages with random message depays (0.4)

1400000
1200000
1000000
G00000
B00000
400030
200000
a

NCCCs

01 02 03 04 05 0F 07 08 09
p2

Fig. 13.Non-concurrent constraint checks with random message dealays (.7)

7 Discussion

Three sets of experiments to investigate the effect of message delays on the perfor-
mance ofDisC'S P search algorithms were performed. Distributed search algorithms
on DisCSPs fall into two distinct families - Single search process algorithms and
concurrent search algorithms. The experiments compared three representative search
algorithms of these two families - Synchronous BT; Asynchronous BT; and Concurrent
DB.

In order to simulate message delays and include their impact in the experimental
results, an asynchronous simulator which delivers messages to agents according to a
logical time counter L7'C) of non-concurrent steps of computation (or non-concurrent

22

300000

250000

200000

150000

100000

50000
1]

NCCCs

— & —ABT

f i ---m-- ConcDB

01 02 03 04 05 06 07 08 09
p2

Fig. 14.A closer look on the NCCCs performed by of ABT and ConcDB, with random message

delays 1 = 0.7)

120000

100000

80000

G000

40000

20000
a

MSGs

—+—CBJ
I - —ABT
\ ---m-- ConcDBE

:‘i/'\“'—s.:j
e o) H'b——..__
- _I: T T T T T ._T_‘ 1

01 02 03 04 05 06 07 0B 09
p2

Fig. 15. Total number of messages with random message debays (.7)

constraints checks) was introduced. When computing logical time, the addition of mes-
sage delay to the total cost occurs only when no concurrent computation is performed.
While in systems with perfect communication, where there are no message delays,
the number of synchronous steps of computation (on a synchronous simulator) is a good
measure of the time of the algorithm run, the case is different on realistic systems with

message delays. The number of non-concurrent constraints checks has to take delays

into account. When the number of non-concurrent CCs is calculated, it reveals a large
impact of message delay on the performance of single process algorithms. In other
words, the actual time it would také B.J to report a solution (including the delays of
message) is much longer than thatafncD B or ABT.

23

300000
250000 - o

200000 - ---m-- ConcDB
150000 e

100000 TS R

0000 | Lo gew T

D -I T T T T T 1
0 2 50 7s 0 12 1al-
50 100 130 200 230 300

delay

— = —ABT

NCCCs
\

Fig. 16.Number of non-concurrent CCs vs. size of random message delays (.4)

700000
£00000 .
S00000 ,.H"r ---m-- ConcDB
400000 -
300000 el
200000 -
100000 f-..’.. - ol

0 2% &5+ 75 100 125 150

50 100 150 200 250 300

delay

- - —ABT

NCCCs
13
i

1 1
A

1
K
=

Fig. 17.Number of non-concurrent CCs vs. size of random message delays ({.7)

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of random message delays, some of their computation can be irrelevant due to
inconsistentAgent_views while the updating message is delayed. This can explain the
large impact of message delays on the computation performed by ABT (cf. [1, 15]). The
impact is not as strong as in synchron@uB.J (Figures 10, 12, 13 and 15).

In order to further investigate the behaviour of the algorithms in the presence of
message delay the simple method for counting non-concurrent constraint checks of [9]
(see Section 3) can be performed concurrently during the run aitieD.S simula-
tor. This would give us the number 8fC'CC's which were actualy performed without
the addition of messge delays to the final result. Figures 18 and 19 present the actual
count of non-concurrent constraints checks (without adding delays) performed by the

24

70000 - —+—CBJ
/0000 . e —ABT
50000 a—

40000 4 4,-“‘ ---m--- ConcDB
sooo0 { " * * *
20000 4 "

10000 4

NCCCs
1
1

0 2550 &80 7% 100 125 150
100 1500 200 280 300

delay

Fig. 18. Number of non-concurrent CCs actualy performed vs. size of random message delays

(p1 = 0.4)

250000 - — +CBJ
200000 a-—-d —a-—ABT
rd
& 150000 Lk ---m--ConcDB
0 o
2 o000 -t
=
50000 { w-.
BN TRERTE L RPN - - R u
0 : : : : : .

o 2580 30 75 100 125 150
100 150 200 250 300

delay

Fig. 19. Number of non-concurrent CCs actualy performed vs. size of random message delays

(p1 =0.7)

agents during the algorithm run. As expected, CBJ performs exactly the same num-
ber of NCCC's as with no delays. The number of NCCCs performedddyT in the
presence of delaygrows by a factor of 2This illuminates an important feature of the
standard simulation of runs @isC'S P algorithms. Based on instantaneous arrival of
messagesd BT reads multiple messages at each step. With random message delays,
agents are more likely to respond to a single message, instead of all the messages sent
in the former (ideal) cycle of computation. Messages in asynchronous backtracking
are many times conflicting. As a result, agents perform more unnecessary computation
steps when responding to fewer messages in each cycle. The improvement that results

25

from reading all incoming messages in each step [18], is no longer useful when mes-
sages have random delays. This can explain a similar result for ABT, on a different set
of problems [1]. As can be seen in Figures 18 and 19, for a multiple search process
algorithm, likeConcD B, the number of actual non-concurrent CCs is not affected and
even decreases by the delay of messages.

To illuminate the robustness 6foncD B to message delay imagine the following
example. Consider the case whétencD B splits the search space multiple times and
the number ofC PAs is larger than the number of agents. In systems with no message
delays this would mean that some of thé As are waiting in incoming queues, to be
processed by the agents. This delays the search on the sub-search-spaces they repre-
sent. In systems with message delays, this potential waiting is caused by the system. By
choosing the rightplit_limit, agents can be kept busy at all times, performing compu-
tation against consistent partial assignments. The results in section 6 demonstrate that
the above claim can be achieved.

In terms of network load, the results of section 6 show that asynchronous backtrack-
ing puts a heavy load on the network, which doubles in the case of message delays. The
number of messages sent in concurrent search algorithms, is always much smaller and
is affected very lightly by message delays.

8 Conclusions

A study of the impact of message delay on the performance of DisCSP search algo-
rithms was presented. A method for simulating logical time, in logical units such as
non-concurrent steps of computation or non-concurrent constraint checks, has been
introduced. The number of non-concurrent constraints checks takes into account the
impact of message delays on the actual runtime of DisCSP algorithms. Two families
of DisCSP search algorithms have been presented and investigated. Single process
algorithms §PAs) and multiple process algorithma/(P As or concurrent search).
The results imply that, single process algorithrfi$’(As), are much more affected by
message delays, than concurrent search. The number of NCCCs grows linearly with
message delay for completely synchronous algorithmglike/. The impact on asyn-
chronous backtracking ABT), is large. Both the computational effort and the load on
the network grow by a large factor, although the effect on runtime is smaller than that
of CBJ. This strengthens the results of [15, 1].

The concurrent search algorithtioncD B shows the highest robustness to message
delays. This is connected to the fact thatloncD B agents always perform computa-
tion against consistent partial assignments. Computation performed in one sub-search-
space while others are delayed is not wasted as in asynchronous backtracking. The
effect of message delay on concurrent search is minor in terms of non concurrent con-
straint checks as well as on its network load.

References

[1] R. Bejar, C. Domshlak, C. Fernandez, , K. Gomes, B. Krishnamachari, B.Selman, and
M.Valls. Sensor networks and distributed csp: communication, computation and complex-
ity. Artificial Intelligence 161:1-2:117-148, January 2005.

26

(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]

(17]

(18]
(19]
(20]
(21]
(22]

(23]

C. Bessiere, A. Maestre, |. Brito, and P. Meseguer. Asynchronous backtracking without
adding links: a new member in the abt famibftificial Intelligence 161:1-2:7—-24, January
2005.

I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning(DCR-04) CP-206¢bnto, September
2004.

Rina Dechter.Constraints ProcessingMorgan Kaufman, 2003.

M. L. Ginsberg. Dynamic backtrackingJ. of Artificial Intelligence Researcti:25-46,
1993.

Y. Hamadi. Interleaved backtracking in distributed constraint netwotksern. Jou. Al
Tools 11:167-188, 2002.

L. Lamport. Time, clocks, and the ordering of events in distributed sysammunication

of the ACM 2:95-114, April 1978.

N. A. Lynch. Distributed Algorithms Morgan Kaufmann Series, 1997.

A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed
constraints processing algorithms. Pnoc. AAMAS-2002 Workshop on Distributed Con-
straint Reasoning DCPpages 86—-93, Bologna, July 2002.

A. Meisels and R. Zivan. Asynchronous forward-checking for distributed csps. In W. Zhang,
editor, Frontiers in Artificial Intelligence and Application$OS Press, 2003.

P. Prosser. Hybrid algorithms for the constraint satisfaction prob@wmputational Intel-
ligence 9:268—299, 1993.

P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-
lems. Artificial Intelligence 81:81-109, 1996.

M. C. Silaghi. Asynchronously Solving Problems with Privacy Requiremepk® thesis,
Swiss Federal Institute of Technology (EPFL), 2002.

M. C. Silaghi and B. Faltings. Parallel proposals in asynchronous search. Technical Report
01/#371, EPFL, August 2001. http://liawww.epfl.ch/cgi-bin/Pubs/recherche.

M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfactionArtificial Intelligence 161:1-2:25-54, January 2005.

B. M. Smith. Locating the phase transition in binary constraint satisfaction probkertis.

ficial Intelligence 81:155 — 181, 1996.

G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps).@onstraint Processing-9®ages 561-2, New Hamphshire,
October 1996.

M. Yokoo. Algorithms for distributed constraint satisfaction problems: A revietu-
tonomous Agents & Multi-Agent Sy3:198-212, 2000.

M. Yokoo, K. Hirayama, and K. Sycara. The phase transition in distributed constraint
satisfaction problems: First results. Pmoc. CP-2000pages 515-519, Singapore, 2000.

R. Zivan and A. Meisels. Parallel backtrack search on discspsPrdn. Workshop on
Distributed Constraint Reasoning DCR-@®ologna, July 2002.

R. Zivan and A. Meisels. Synchronous vs asynchronous search on discspsocirLst
European Workshop on Multi Agent System, EUMBgord, December 2003.

R. Zivan and A. Meisels. Concurrent backtrack search for discsp®rdo. FLAIRS-04
pages 776-81, Maiami Florida, May 2004.

R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csp€Pin
2004 pages 782-7, Toronto, 2004.

27

