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Abstract

A distributed concurrent search algorithm for distributed constraint satisfaction probEeGSF) is
presented. Concurrent search algorithms are composed of multiple search prod8Bsstdsaf operate con-
currently and scan non-intersecting parts of the global search space. SPasltrepresented by a unique
data structure, containing a current partial assignmé@iit4), that is circulated among the different agents.
Search processes are generatgdamically started by the initializing agent, and by any number of agents
during search.

In the proposedC'oncD B, algorithm, all search processes perfatymamic backtrackingAs a conse-
guence of backjumping, a search space can be found unsolvable by a different search process. This enhances
the efficiency of theZoncD B algorithm. Concurrent Dynamic Backtracking is an asynchronous distributed
algorithm and is shown to be faster than former algorithms for soliimgC'S Ps. Experimental evaluation
of ConcD B, on randomly generateBisC'S Ps demonstrates that the network load@dncD B is similar
to the network load of synchronous backtracking and is much lower than that of asynchronous backtracking.
The advantage dfoncurrent Searcis more pronounced in the presence of imperfect communication, when
messages are randomly delayed.
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1. Introduction

Distributed constraint satisfaction problenZgCSR) are composed of agents, each holding its local con-
straint network, that are connected by constraints among variables of different agents. Agents assign values
to variables, attempting to generate a locally consistent assignment that is also consistent with all constraints
between agents (cf. [22]). To achieve this goal, agents check the value assignments to their variables for local
consistency and exchange messages with other agents, to check consistency of their proposed assignments
against constraints with variables owned by different agents. [20, 1].

Distributed CSPs are an elegant model for many every day combinatorial problems that are distributed by
nature. Take for example a large hospital that is composed of many wards. Each ward constructs a weekly
timetable assigning its nurses to shifts. The construction of a weekly timetable involves solving a constraint
satisfaction problem for each ward. Some of the nurses in every ward are qualified to worEmehgency
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Room Hospital regulations require a certain number of qualified nurses (e.g. for Emergency Room) in each
shift. This imposes constraints among the timetables of different wards and generates a complex Distributed
CSP [19].

A search procedure for a consistent assignment of all agent®in@S P, is a distributed algorithm. An
intuitive way to make the distributed search procesdarC'S Ps efficient is to enable agents to compute
concurrently. Concurrent computation by agents can result in a shorter overall time of computation for finding
a solution.

One method for achieving concurrency for searchlanC'SPs is for agents to perform assignments
concurrently. In order to avoid the waiting time of a single backtrack search, agents compute assignments
to their variables asynchronously. In asynchronous backtracking algorithms agents assign their variables
without waiting for information about all relevant assignments of higher priority agents [21, 16, 1]. In order
to make asynchronous backtracking correct and complete, all agents share a static order of variables and the
algorithm keeps data structures fogoods that are discovered during search [20, 1].

The present paper proposes a different way of achieving concurrency for search. In order to achieve
shorter overall run-time, concurrent search runs multiple search processd3isQZP All agents partici-
pate in all search processes, assigning their variables and checking for consistency with constraining agents.
All search processes are performed asynchronously by all agents, thereby achieving concurrency of computa-
tion and shortening the overall time of run for finding a global solution. In each search process agents perform
assignments sequentially. Agents and variables are ordered randomly on each of the search processes, diversi-
fying the sampling of the search space. Concurrent search distributes among agents a dynamically changing
number of search processes. The degree of concurrency during search changes dynamically and enables
automatic load balancing.

In order to exchange complete information about assignments of all a@emtsyrrent Searchirculates
multiple Current Partial Assignmen{€PAs) among all agents. Ea€lPArepresents one search process)
and each search process scans a different part of the global search space. The search space is split dynamically
at different points on the path of the search process by agents generating addliitasl The splitting and
re-splitting of the search space is performed independently by agents and is thus a distributed process. Splits
are first attempted by agents residing at the top of the sub search tree that is being split. When the agent has
no opportunity to split, the splits move down to agents that are lower in the split sub-tree.

It is well known that search algorithms on CSPs benefit from backjumping [14, 6, 4]. An elegant form of
backjumping which stores explenations for the removal of valu&yimamic Backtracking7]. This method
was later adapted to distributédS P algorithms by [2]. The best Concurrent Search algorithm, Concurrent
Dynamic Backtracking@oncD B), presented in this paper, performs dynamic backtracking (DB) as in [2] on
each of its concurrent sub-search spaces. Since search processes are dynamically geriésaidd Bythe
performance of backjumping in one search space can indicate that other search spaces are unsolvable. This
feature, combined with the random ordering of agents in each search process, enables early termination of
search processes that are discovered to be unsolvable. The combinaionmcofrent SearclandDynamic
Backtrackingn ConcD B result in a fast algorithm, which outperforms previous complete search algorithms
both sequential assigning (synchronous) and Asynchronous Backtracking by a large factor (See Section 5).



Concurrent Search, as proposed in the present paper and in [23, 25], may seem similar to former ap-
proaches of parallelism. Splitting the search space at the first agent and running several search processes for
each of the values of the first agents’ domain is part of interleaved search in [8]. The possibility of dynamic
allocation of predefined search slots for multiple asynchronous backtracking search processes was reported
in [17]. The performance of multiple asynchronous backtracking search shows a small improvement for two
asynchronous backtracking search processes and deteriorates for larger concurrency [8]. On the other hand,
Concurrent Searchs presented in the present study improves the performance of single search process, both
sequential and asynchronous backtracking, by a large factor. (see Section 5).

Distributed constraint satisfaction problem3i¢C'S Ps) are presented in section 2. Section 3 presents
the principles and mechanism@bncurrent Searchlong with a detailed description of Concurrent Dynamic
Backtracking. The method for terminating SPs which are shown to be unsolvable during backjumps, is
presented in section 3.3. A correctness and completeness prdddmaurrent Searchand in particular for
ConcD B, is presented in section 4.

Section 5 presents an extensive experimental evaluation, which demonstrates multiple advantages of
ConcDB. First, the features of concurrent search are investigated. Multiple search processes are better
than one and dynamic generation of search processes makes the algorithm perform best (section 5.1). Next,
a comparison ofZoncD B to existing algorithms for solvindisCSPs, is presented in section 5.2. The
impact of message delay on the performance of concurrent search is evaluated in SectitmbI3B is
compared ta”BJ, AFC and ABT in the presence of random message delays. Sequential assigning algo-
rithms are affected the most by message delays. Concurrent dynamic backtracking is much more robust to
message delay than asynchronous backtracking. The delay of messages has a strong impact on the run of
distributed search algorithms [5, 27]. Finally, the heuristic which is used by agents to determine the level of
concurrency is evaluated in Section 5.4. This experiment demonstrates the size of the effect that the level of
concurrency has on the performance of the algorithm in the presence of message delay. Conclusions on the
advantages of using multiple DB search processd3ivC'S P search are presented in section 6.

2. Distributed Constraint Satisfaction

A distributed constraint network (or a distributed constraint satisfaction problisGSH is composed of a
set ofk agentsA;, A,, ..., Ax. Each agen#}; contains a set of constrained variables, X, , ..., X,

nq

. Con-
straints orrelations R are subsets of the Cartesian product of the domains of the constrained variables [4]. For
a set of constrained variablg§, X, , ..., X, , with domains of values for each varialllg , D;,, ..., Dy, ,
the constraintis defined @& C D;, x Dj, x ... x Dy, . A binary constraint R;; between any two variables
X, and X; is a subset of the Cartesian product of their domait)s;C D; x D;. In a distributed constraint
satisfaction problenDisCSR the agents are connected by constraints between variables that belong to dif-
ferent agents (cf. [21, 19]). In addition, each agent has a set of constrained variablelgdad.canstraint
network

An assignment (or a label) is a pairvar, val >, wherevar is a variable of some agent and is a value
from var's domain that is assigned to it. partial assignmenfor a compound label) is a set of assignments



of values to a set of variables. golution to aDisCSPis a partial assignment that includes all variables of

all agents, that satisfies all the constraints. Following all former worRie@SF, agents check assignments

of values against non-local constraints by communicating with other agents through sending and receiving
messages. An agent can send messages to any one of the other agents.

One simple protocol for checking constraints, that appears in many distributed search algorithms, is to
send a proposed assignmentvar, val >, of one agent to another agent. The receiving agent checks the
compatibility of the proposed assignment with its own assignments and with the domains of its variables and
returns a message that either acknowledges or rejects the proposed assignment. The following assumptions
are routinely made in studies éfisC'S Ps and are assumed to hold in the present study [20, 2].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception is finite.
3. Messages sent by agefitto agentA; are received byl; in the order they were sent.

4. Every agent can access the constraints in which it is involved and check consistency against assign-
ments of other agents.

3. Concurrent Search

Concurrent Searclis a family of algorithms which perform multiple concurrent backtrack search processes
asynchronously on disjoint parts of tbésCSPsearch-space. Each search process includes all variables and
therefore involves all agents. Each agent holds a set of data structures, one for each search process. These data
structures, which we terr8earch Processes (SP8)clude all the relevant data for the state of the agent on
each of the search processes. Agents in concurrent search algorithms pass their assignments to other agents
on a special type of message - a Current Partial Assignm&hi). EachCPArepresents one search process,
and holds the agents’ current assignments in the corresponding search process. An agent that &eAaives a
tries to assign its local variables with values that are not conflicting with the assignments already on the
CPA using only the current domains in ti&P that is related to the receive@PA The uniqueness of the
CPAfor every search space ensures that assignments are not done concurrently (and conflictingly) in a single
sub-search-space [25, 26].

An agent can generate a set.®Ps and corresponding@ P As that split the search space of a single
S P whoseC P A has passed through that agent, by splitting the domain of one of its variables. Agents can
perform splits independently and keep the resulting data structBRs} frivately. All other agents need not
be aware of the split, they process @IP As in exactly the same manner (see section 3IZHAs are created
either by the Initializing Agentlf) at the beginning of the algorithm run, or dynamically by any agent that
splits an active search-space during the algorithm run. A simple heuristic of counting the number of times
agents pass a givedPA (without finding a solution), is used to determine the need for re-splitting of the
search-space traversed by tliaP A. This generates a mechanism of load balancing, creating more search
processes on heavily backtracked search spaces.
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Figure 1: SimpleConcurrent Searckvith two CPAs

Figure 1 presents an example of a DisSCSP, searched concurrently by two search processes represented by
two CPAs,CPA; andCPA,. Each of the four agentd; to A4, holds two Search ProcessesHs). The
domains of all four agents are the samfd ~4}. The current domains of the SPs are shown in Figure 1. The
domains on the left represent the state after 3 assignme6t®tb,. The domains on the right hand side of
figure 1 represent the state after the second assignmémn®ib,.

AgentA; has assigned the value 1 6P A, and the value 3 ot PA,. The values that are left in each of
its domains are 2 it P; and 4 inS P,. Agent A; has assigned the value 24P A1, having failed to assign
the value 1. This leaves its current domain, $d7,, with the values [3,4]. The two CPAs are traversing non
intersecting sub search spaces in whitR A4, is exploring all tuples beginning with 1 or 2 for agefi, and
C P A, all tuples beginning with 3 or 40P A, is depicted on the LHS of figure 1 addP A, is on the RHS.

CPA; moves among the agents in the ordgr— A; — Az. CPA; moves in the orded; — A4 —...

A backtrack operation is performed by an agent which fails to find a consistent assignment with the
partial assignment on théPAthat it is currently holding. A backtrack operation sendSB8A backwards,
requesting the receiving agent to revise its assignment o6’fhd. Agents that have performed dynamic
splitting, have to collect all of the returningP As, of the relevant P, before declaring that a sub-search-
space does not contain a solution. In this case all consistent values of the split domain have been sent forward
on someC' P A and failed, which means the agent must perform a backtrack operation.



The search ends unsuccessfully, wherC#bs return for backtrack to the 1A and the domain of the first
variable of eacl®’ P A is empty. In this case all the search processes are stopped. The search ends successfully
if one CPA contains a complete assignmantalue for every variable in thBisCSP.

There is no synchronization between the assignments performed in diffefemnand the splitting of
different C PAs. Due to the random choice of the next agent and the dynamic asynchronous splitting of
search spaces, the steps of agents in different search process are interleaved in a non predefined order. This
makes Concurrent Search algorithms asynchronous [11].

The following subsections present a detailed description of Concurrent Search.

3.1 Main objects of Concurrent search

The main data structure that is used and passed between the agentsrisna partial assignment (CPA)

A CPAcontains an ordered list of triplets A;, X;,val > whereA, is the agent that owns the variablg

andval is a value, from the domain of ;, assigned toX;. This list of triplets starts empty, with the agent

that initializes the search process, and includes more assignments as it is passed among the agents. Each
agent adds to &PAthat passes through it, a set of assignments to its local variables that is consistent with

all former assignments on tl&PA If successful, it passes ti@PAto the next agent. If not, hacktracksby

sending theCPAto the agent from which it was received.

Splitting the search space on some variable divides the values in the domain of this variable into several
groups. Each sub-domain defines a unique sub-search-space and aGP#guaverses this search space.
Dynamic splitting is triggered by the number of assignment steps performed’dh/g without returning
back to its initiator. This is an intuitive meaning of thrashing and can be based on a simple threshold for the
number of unsuccessful assignmentgeps_limit.

Consider the constraint network that is described in figure 2. The three agents own one variable each, and
the initial domains of all variables contain four valugls.4}. The constraints connecting the three agents
are: X; < Xo, X1 > X3, andX, < Xj3. The initial state of the network is described on the LHS of
Figure 2. In order to keep the example small, no initial split is performed, only dynamic splitting. The value
of steps_limit in this example is 4. The first 5 steps of the algorithm run produce the state that is depicted on
the RHS of Figure 2. The circled values in the current domains of agéngd.X, are the assigned values
on theC' PA. The current domain ok, had only two values leff3, 4]. X35 is now holding the” P A and has
no assignment that is consistent with it.

The run of the algorithm during these 5 steps is as follows:

1. X, assigns its variable the value 1, and send&$@a C P A with a step counte€’ P A_steps = 1.

2. X, assigns its variable the value 2, and sendgtliz4 with both assignments, and withP A_steps
=2,t0X3.

3. X3 cannot find any assignment consistent with the assignments @nibe It passes thé'P A back
to X, to reassign its variable, with' P A_steps = 3.

4. X, reassigns its variable with the value 3, and send§'tRel again toX; after raising the step counter
to 4.



[1,2,3,4]

X2=X3
X3 )[1234] [1,2,3,4]
At the beginning After 5 steps

Figure 2: Initial state and the state after thi& A travels 5 steps without returning to its initializing agent

X1<X2 X1=X2

X1>X3 @,4] X1>X3 [1,2,3.4]

X2<X3 X2<X3

X3 )IL23.4]

Original SP after splitting New SP created

Figure 3: The new non intersecting search spaces now searched using two diffefent

5. X3 receives th&€' P A with X,’s new assignment.

In the current step of the algorithm, agexi receives aC P A which has reached thgep_limit. It has
to generate a split operation. Before trying to find an assignment for its vari@pleends a split message to
X1 which is theC P As generator and changes the value of (hB A_steps counter to 0. Next, it sends the
CPAto X, in a backtrack message. The algorithm run proceeds as follows:

e WhenX; receives the split message it performs the following operations:



— Creates a new (empty domaifi® data structure.

— Deletes value8 and4 from its original domain and inserts them into the domain of the new split
SP.

— Creates a new P A and assigns it witl3 (a value from the new domain).

— Sends the new P A to a randomly selected agent.

e Other agents that receive the né&# A create news Ps with a copy of the initial domain.

The resulting split search-spaces are depicted in Figure 3. Circled values represent those that are currently
assigned on the correspondi6g” A, or CPA,. After the split, twoC P As are passed among the agents.
The twoC P As perform search on two non intersecting search-spaces. In the osghafter the splif X,
can assign only valudsor 2 (see LHS of Figure 3). The search on the original SP is continued from the same
state it was in before the split. Agents, and X5 continue the search using their current domains to assign
the originalC P A. Therefore, the current domain &%, (on .S P;) does not contain values 1 and 2 which were
eliminated in earlier steps. In the newly generated search spadeas the value8, 4 in its domain. Agent
X, assigns3 to its variable and the other agents that recé\eA, check the new assignment against their
full domains (RHS of figure 3).

Every agent that receivesGPA for the first time, creates a local data structure which we caarch
process (SR)This is true also for the initializing agent#), for each create@€PA The SPholds all data on
current domains for the variables of the agent, such as the remaining and removed values during the path of
the CPA

The structure of théD of a CPAand its correspondin§Pis a pair< A,j >, whereA is the ID of the
agent that created the CPA apds the number of CPAs this agent created so far. This enables all agents to
createCPAs with a uniqudD. When a split is performed during search, the gener&tBd! has a uniqué D
and carries thé D of theC P A from which it was split.

Although any agent can split its domain, the current version of the algorithm splits search spaces as high
as possible in the search tree. This generates split sub-search-spaces that are as large as possible and a larger
number of agents participate in the divided search procedure. When agents have no further opportunity to
split anS P because of lack of values in their current domain, split messages are transferred down the search
tree to agents lower in the current order of the search (See Figure 5, progedyitem _split, lines 2, 8
and 9). Note that different concurrent search processes are ordered differently. Therefore, the splitting of the
search space occurs at different agents in different concusi@nt

3.2 General Concurrent Search

The following terminology is used in the description of concurrent search algorithms:
e CPA_generator: EveryCPAcarries thdD of the agent that created it.
e origin_SP: an agent that performs a dynamic split, holds in each of theS$iesthe ID of the SPit

was split from (i.e. obrigin_SP). An analogous definition holds ferigin CPA. Theorigin_SP
of anSPthat was not created in a dynamic split operation is its tn



Concurrent_Search

1. done~ false

2. if(1A) theninitialize_SPs

3. while(not done)

4 switch msg.type

5 split: performsplit

6. stop: done« true

7 CPA: receiveCPA

8 backtrack: receiveCPA

receive CPA:
CPA— msg.CPA
if (first_received(CPA.ID))
createSP(CPA.ID)
if(CPA.generator = ID)
CPA.steps— 0
else
CPA.steps ++
if (CPA.steps =steps_limit)

© N O~

splitter «— select_assigned_agent
CPA_steps «— 0

send{plit_msg splitter)

. if(msg.type =hacktrack)
removelastassignment

. assign_CPA

o
A wDdPE O

assignCPA:

1. CPA+« assignlocal

2. if (is_consistent(CPA))
3 if (is_full(CPA))

4 report_solution

5 stop

6. else

7 send(CPA, nexagent)
8 else

9 backtrack

initialize _SPs

1. for i« 1todomain_size

CPA «— createCPA(i)
SPJi].domain— first.var[valuei]
createSP(CPA.ID)

assign CPA

A

Figure 4: Main and Assign parts of Concurrent Search

e split_set: the set ofSP I Ds, stored in anrigin_SP. Everyorigin_S P holds in itssplit_set the I Ds
of all the SPs for which it is theirorigin (i.e. all. SPs which were split from it by the agent holding
it). For every activeS P, the onlysplit_set relevant is thesplit_set of its origin_SP.

e steps_limit: the number of steps (from one agent to the next) that will trigger a split, iI€P®&does
not find a solution, or does not return to its generator.

The messages exchanged by agents in concurrent search are the following:

e CPA - the message carrying@urrent Partial Assignment

e backtrack_msg- a CPA sent in a backtrack operation.

e stop- a message indicating the end of the search.



backtrack:

1. delete(CPA.ID fromvrigin_S P.split_set)
2. if(origin_SP.split_set is.empty)
3 if (I1A)

4 CPA«— no_solution

5. if (no_active CPAS)

6 reportno_solution

7 stop

8 else

9 sendbacktrack, last_assignee)
10. else

11.  mark_fail(CPA)

perform _split:

1. if(not_backtracked(C' P A))

2. var« select_split_var

3 if (var # null)

4 createsplit. SP(var)

5. createsplit CPA(SP.ID)

6. add(CPA.ID tarigin_S P.split_set)
7 assign CPA

8 else

9 sendgplit, next_agent)

stop:
1. send§top, all_other_agents)
2. done— true

Figure 5: Backtrack and Split for Concurrent Search

e split - a message that is sent in order to trigger a split operation. Contaifid thfehe SPto be split.

Figures 4 and 5 present the functions which are performed in any type of concurrent search algorithm.

The main function of the algorithm and functions that perform assignments off f& when it moves

forward are presented in Figure 4.

e The main functiorConcurrent_Searchis run by all agents. If it is run by thiaitializing agent (1A) it

initializes the search by creating multigs assigning each SP with one of the first variable’s values.
After initialization, it loops forever, waiting for messages to arrive.

receive CPA first checks if the agent holdssPwith thelD of thecurrent CPAand if not, creates a new

SP If the CPA is received by its generator, it changes the value of the steps counh®et (steps)

to zero. This prevents unnecessary splitting. Otherwise, it checks wheth€Pthbas reached the
steps_limit and a split must be initialized (lines 7-9). The splitting agent, which we teiditter, is
selected to be any one of the assigned agents (line 9). A specific heuristic for splitting is to send the
split message to th€ P A_generator (as mentioned above thieP A_generator is the first part of any
CPA_ID). This is equivalent to splitting the search tree as high as possible. This specific policy is
implemented in th&€'oncD B version of the present paper. Before assigningti¥4 a check is made
whether the® P A was received in dacktrack_msg. If so, the previous assignment of the agent which

is the last assignment made on & A is removed, beforessign C P A is called (lines 12-13).

assignCPA tries to find an assignment for the local variables of the agent, which is consistent with the
assignments on th€ PA. If it succeeds, the agent sends @Ato the selectedext_agent (line 7).
If not, it calls thebacktrackmethod (line 9).

10



Origin = <1,1=

Origin = <1,1> Split-set = []

:

Split-set = [<1,1=> <1,2=] J'
Origin = <1,2=

Origin = <1,1>
Split-zset = [<1,2=]

¢

Split-set = [=1,1=]
Origin = <1,2=

1,1,2,_ CPA,

A, Split-set = [<1,2>]

.4-

Origin= <1,1>

3,_,_,2 CPA,

;

Split-set = [=1,1=]

Figure 6: SimpleConcurrent Searchvith two CPAs

The rest of the functions of Concurrent Search are presented in Figure 5.

e Thebacktrack method is called when a consistent assignment cannot be foun8fnSince a split
might have been performed by the current agent, a check is made, whethe CGi¥shin thesplit_set
of the origin_C P A of the backtracking” PA have also failed (line 2). If not then only the current
CPA is marked (linell) and no further action need take place. When allGplids have returned
unsuccessfully, the search space of $li¢is unsolvable and a backtrack operation is initialized.

In case of arlA, the SPand the correspondingrigin_.CPA are marked as a failure (lines 3-4). If all
otherCPAs are marked as failures, the search is ended unsuccessfully (line 6). If the current agent is
not thel A, a backtrack message is sent to the agent whose assignment is the latest of the assignments
included in the inconsisteid P A (line 9).

e The perform _split method tries to find in th&P specified in thesplit_message, a variable with a
non-empty currentlomain. It first checks that th€ PA to be split has not been sent back already,
in a backtrack message (line 1). If it does not find a variable for splitting, it sends armsgage to
next_agent (lines 8-9). If it finds a variable to split, it creates a néRandC P A, and callsassignCPA
to initialize the new search (lines 3-5). THe of the generated’ P A is added to the split set of the
divided SPsorigin_SP (line 6).

Figure 6 extends the example presented in figure 1. For 8&tfexcept for the ones holding the cor-
respondingC P A), the content of therigin and thesplit-setare displayed. Therigin of all SPs except

11



for the S Ps of agentA; are their own IDs since they were not created in a dynamic split operation. Their
split-setincludes only their own ID, since they are not yet an origin of &# created by a dynamic split
operation. In this example th&P < 1,2 > held by agentsi; and A3 will only be created when they will
first receive the correspondigP A.

Theorigin of SP < 1,2 > is the S P it was split from which is< 1,1 >. The splitsetofSP < 1,2 >
is empty since the relevanplit-setis only itsorigin_S P’s split-set Thesplit-setof SP < 1,1 >, includes
its own I D and the ID of theS P that was split from it which is< 1,2 >

3.3 Concurrent Dynamic Backtracking

The method of backjumping that is used in thencD B algorithm is based oBynamic Backtracking7].
Each agent that removes a value from its current domain stores the partial assignment that caused the removal
of the value. This stored partial assignment is callecléminating explanatiorby [7]. When the current
domain of an agent empties, the agent constructs a backtrack message from the union of all assignments in its
stored removal explanations. The union of all removal explanations is an inconsistent partial assignment, or a
Nogood[7, 20]. The backtrack message is sent to the agent which is the owner of the most recently assigned
variable in the inconsistent partial assignment.

In concurrent dynamic backtracking, a shiddgoodcan rule out multiple sub-search-spaces, all of which
contain no solution and are thus unsolvable. In order to terminate the corresponding search processes, an
agent that receives a backtrack message performs the following procedure:

¢ Detect theS P to which the received (backtrack)P A either belongs or was split from.
e Check if theC' P A corresponding to the detectéd® was split down its path.
o Ifitwas:
— Send anunsolvable message to theextagentof the relatedS P, thus generating a series of
messages along the former path of (h2 A.
— choose a new unique ID for th@P A received and its relateslP.
— continue the search using tls&”> andC P A with the new ID.
e Check if there are othe$ Ps which contain the inconsistent partial assignment received (by calling

function check SP9, send correspondingnsolvable messages and resume the search on them with
new generated' P As.

The change of ID makes the resumed search process independent of the process of terminating unsolvable
search spaces. If the agents would have resumed the search usidydhthe originalS P or of the received

CPA, arace condition would arise since there is no synchronization between the process of terminating
unsolvable search procedures to that of the resumed valid search procedure. In such a case, an agent that
received anunsolvable messageight have marked an active search space as unsolvable.

12



ConcDB: backtrack:

1. done< false 1. delete(currenCPA fromorigin_split_set)

2. if(IA) theninitialize_SPs 2. if(origin_split_set is_.empty)

3. while(not done) 3. if(1A)

4 switch msg.type 4 CPA— no_solution

5. split: performsplit 5. if (no_active CPAS)

6 stop: done« true 6 reportno_solution

7 CPA: receiveCPA 7 stop

8 backtrack: receiveCPA 8. else

9 unsolvable: mark.unsolvable(msg.SP) 9 backtrack_-msg «—
inconsistent_assignment

receive CPA: 10. sendfacktrack_msg,

1. CPA— msg.CPA lowest_priority_assignee)

2. if(unsolvable SP) 11. else

3. terminate CPA 12. mark_fail(current_.CPA)

4. else

5 if (first_received(CPAID)) mark _unsolvablgSP)

6. createSP(CPAID) 1. mark SP unsolvable

7. if(CPA_generator = 1D) 2. send(unsolvable, SP.nexgent)

8 CPAsteps— 0 3. for eachsplit SP in SP.origin.spliset

9. else 4.  mark splitSP unsolvable

10. CPA . steps ++ 5 send(unsolvable, spl&P.nextagent)

11. if(CPA_steps = steps_limit)

12. splitter «— C' PA_generator check SPginconsisteniassignment)

13. send{plit_msg, splitter) 1. foreachspin {SPs\ current_SP}

14. if(msg.type acktrack) 2. if(sp.contains(inconsistergssignment))

15. checkSPs(CPA.inconsisterassignment) 3 send(unsolvablep.nextagent)

16. lastsentCPAremove_last_assignment 4. lastsentCPAremove_last_assignment

17. CPA « last_sent_ CPA 5 CPA — lastsentCPA

18. if(sp.splitahead) 6 sp.renameSP

19. send(unsolvablep.nextagent) 7 assign CPA

20. sp.renameSP

21. assign_.CPA
Figure 7: Methods for Dynamic Backtracking ©bncD B
The unsolvablemessage used by tliéoncD B algorithm, is a message not used in gen@ahcurrent

Search which indicates an unsolvable sub-search-space. An agent that receiuesdnable message
performs the following operations for the unsolvabIe and each of th& Ps split from it:
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e mark theSP as unsolvable.

e send anunsolvable message which carries the ID of thé to the agent to whom the relatédP A
was last sent.

Figure 7 presents the metho@encDB, receiveCPA andbacktrack that were changed from the general
description ofConcurrent Searcin Figures 4 and 5. Figure 7 contains also two additional methods needed
for addingDynamic Backtrackingo concurrent search.

In methodreceive_.CPA a check is made in lines 2,3 whether th& related to the received' PA
is marked unsolvable. In such a case W2 A is not assigned and the relatéd is terminated. If the
split_limit is reached theplit message is sent to the generator of B A to create the split as high as
possible in the search tree (lines 11-13). This is a specific heuristiefett_assigned_agent of the general
receive_C' P A in Figure 4 (line 9 there). For a backtracki6g® A (lines 14-20) a check is made whether there
are other SPs which can be declared unsolvable. This can happen when the head (or prefix) of their partial
assignment (theicommon head i.e. CHcontains the received inconsistent partial assignment. Procedure
check_S Ps for every suchS P found, initiates the termination of the search process on the unsolvable sub-
search-space and resumes the search with a newly genér&tdd Next, a check is made whether thé
was split by agents who received thi” A after this agent (line 18) (this fact can be recorded on(iifA
when its holder initiates the split). If so, the termination of the unsolvalifeis initiated by sending an
unsolvable message. A new ID is assigned to the receigddA and to its related P (line 20).

The inconsistent partial assignment received inbthétrack message may rule out more than one active
search process. The check performed by the functi@tk SPstriggers the termination of these inconsistent
search processes. For each of the terminated a newC P A is created and the search process is resumed
after the culprit assignment is revised.

In methodbacktrack, the agent inserts the culprit inconsistent partial assignment into the backtrack
message (line 9) before sending it back in line 10. This is the only difference from the standard backtrack
method in Figure 5.

As described above, methadark_unsolvable is part of the mechanism for terminating SPs on unsolv-
able search spaces. The agent marksStRerelated to the message received, and a#ysplit from it, as
unsolvable and sends unsolvable messages to the agents to whom the correspéhdlingere sent.

4. Correctness of Concurrent Search

To prove correctness of a search algorithm forsC'SPs one needs to prove that it is sound, complete

and that it terminates. A central fact that can be established immediately is that agents send forward only
consistent partial assignments. This fact can be seen at lines 1, 2 and 7 of prassign€PA (Figure 4).

This implies that agents process, in procedassignCPA only consistentC P As. Since the processing of
CPAs in this procedure is the only means for extending partial assignments, the following lemma holds:

Lemma 1 Concurrent Searcbxtends only consistent partial assignments. The partial assignments are re-
ceived via aC P A, extended and sent forward by the receiving agent.
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The following theorem derives immediately from Lemma 1.
Theorem 1 Concurrent Searcis sound.

The only lines of the algorithm that report a solution are lines 3, 4 of procexhgignCPA These lines
follow a consistent extension of the partial assignment on a recéied. It follows that a solution is
reportedff aC P A includes a complete and consistent assignment. O

To prove completeness f@oncurrent Searghone needs first to eliminate the stopping condition for the
first solution (lines 3-5 of functiomssignCPAIn Figure 4). Another important point is the exact manner in
which domains of values of variables are scanned, for the next consistent assignment. Values for assignment
are selected only in line 1 of the functiassignCPA For the completeness proof one naturally assumes that
the functionassign_local, that is run by every agent, scans all values of the current domain exactly once.
This is equivalent to the common assumption in all exhaustive backtracking algorithms that all values are
tried until a consistent assignment is found (cf. [9]).

With the above assumptions, the completenesSafcurrent Searclis established in three steps. First,
for the case of a singl€ PA. Then, for several’ P As generated by theA. Finally, for dynamic generation
of C' P As during search. The following lemma establishes the completenessibfRAcase.

Lemma 2 Concurrent Searcbends forward in &' P A everyconsistent partial assignment.

To prove Lemma 2, one proceeds in analogy to the proof of completeness for centralized backtrack by
Kondrak and van Beek [9]. With no loss of generality assume that every agent holds one variable. Assume
that there is some consistent assignmént, Xs, . . . X ) of lengthk, that is not received by any agent. Take
the highestj < k, such that assignmefiXy, X»,... X;_1) is sent forward (by agent — 1) on aCPA
that is received by agent There is at least one, sent by the initializing agent. Agertas a consistent
assignmentX,, X, ... X;) that extend$ X, X», ... X;_1), being a sub-tuple afX;, X,,... X}). When
agentj extends the received P A, it succeeds in a consistent partial assignniéht, X, ... X;) and sends
it forward. This can be seen clearly in lines 1, 2, 7 of functiesign_C P A in Figure 4. This contradicts the
above assumption on the maximality of the assignm&nt X5, ... X;_,), thatis sent forward. O

To complete the correctness proof one needs also to showZtmeturrent Searckerminates. The mes-
sages ofConcurrent Searclearry C P As and move either forward or backward. The number of backward
moves is finite, since each backward move deletes a value from the domain of the receiving agent (lines 10-11
of functionreceive_C' P A in Figure 4). To prove termination one needs to show that there can only be a finite
number of forward moves (i.e. carryidgP As). Every agent keeps its current domain in the SP structure and
scans its values exactly once, for every different partial assignment received B aEvery move forward
carries a consistent partial assignment (by Lemma 2). There is a finite number of different consistent partial
assignments, hence a finite number of forward move&aincurrent Search
Theorem 2 follows immediately.

Theorem 2 The 1-CPA version dfoncurrent Searcis complete and terminates.
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Having shown the correctness@bncurrent Searckor a singleC' P A, one needs to show correctness for
the more general case of multigl&P As generated at the algorithm start.

Theorem 3 A version ofConcurrent Searclwhich includes a single split inté search processes at the
beginning of the search is complete and terminates.

Consider a8C'P A, C;, that corresponds to a partial domain of one variable of the initializing agent and is
passed through the network of all agents. Each adeiitpasses through generates a data strucdufiewith
all domains of its local variables (lines 2, 3 of procedueeive CPA). The only difference between the data
structures corresponding & and those that are generated for-& P A version ofConcurrent Searcks in
the structures P; of the initializing agent. In every other agent, the data structureand the code it runs are
exactly equal to those run f@oncurrent Searchvith oneC' P A. For agents different than tHed, the search
procedure ofC; scans exactly the same subspace that is scanned for th€ BAeversion ofConcurrent
Search Consequently, the search procedure correspondi6g i correct.

The union of all domain values of the selected variable for a split (in/theis exactly equal to the
original domain of values of that variable. As shown above, the search sub-trees spanned by all agents that
are not thel A, are equal to those spanned for th€PAalgorithm. Each of those equal search subspaces
is scanned completely and correctly and all these scans terminate and are performed for every value of the
variable of thel A that was selected for the split operation. Consequently, the union of the sub-trees that
corresponds to each of ti@PAs is exactly equal to the search tree that is spanned by thEBA&ersion of
Concurrent Search O

The final step in the correctness proof@bncurrent Searclis to show that a dynamic split operation
does not interfere with the correctness of the algorithm.

Theorem 4 Concurrent Searcwith dynamic splitting is complete and terminates.

Consider agentl; which is not the initializing agent, that receivesdit_msg and runs the procedure
per form_split. It sends forward one or more consisténP As that represent non intersecting sub-search-
spaces. The completeness and termination of the search on each of these sub-search-spaces follows from the
completeness of the search initialized by &% A of an initializing agent. Agentl; will declareno solution
by sending a backtrack message, only after all of its §#isfailed (lines 1, 2 of procedureacktrach. In
other words, backtracking from multipé P As preserves completeness at the splitting agent. The condition
to receive failure messages for all values for whieti2A was generated ensures that backtrack corresponds
exactly to the case where there is no solution in the scanned search space. The sum of the number of tuples
explored in the split search space is equal to the number of tuples in the original search space and therefore
the algorithm termination is not affected by the split. O

For the completeness 6foncD B one needs to show also that the additional mechanism for terminat-
ing unsolvable search processes on unsolvable sub-search-spaces does not terminate a search-process which
explores a sub-search-space that includes a solution. To do so we continue as follows. In every sub-search-
space, all tuples of assignments share the head (or prefix) of the assignment. Thus for every sub-search-space
we define:
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Definition 1 A Common HeadC H) is the maximal prefix of assignments which is included in all partial
assignments in a sub-search-space.

Lemma 3 A sub-search-space who§H{ includes an inconsistent subset of assignments does not include a
solution to the DisCSP.

The proof of lemma 3 derives from the method of constructing an inconsistent assignment in dynamic
backtrack [7]. A partial assignment is declared inconsistent only if it causes an empty domain in one of the
variables. This implies that this partial assignment cannot be part of a solution. From definition 1 we derive
that if aC'H includes an inconsistent partial assignment it must be included in all the assignments in its
related sub-search-space which means that none of these assignments is a solutibni46'the. O

Theorem 5 ConcD B does not terminate search-processes which lead to a solution.

ConcDB terminates a search process by sending forward unsolvable messages (line 19 in function
receiveCPA line 5 in functionmark unsolvable line 3 in functioncheckSP9. Only S Ps that have &' H
that is an extension of th@ H that was found inconsistent are marked unsolvable. The search onStRsse
is terminated when the agent receives thB A corresponding to the unsolvabte (lines 2,3 of function
assignCPA). Lemma 3 implies the proof for Theorem 5. It is immediately clear from Theorem 5 that all
partial assignments that lead to a solution will be extended, which implies the completetgss6fB. [

5. Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to compare two independent
measures of performance - time, in the form of steps of computation [11, 20], and communication load, in
the form of the total number of messages sent [11]. Comparing the number of non-concurrent steps of
computation of several search algorithmsoisC'S Ps, measures the concurrency of the algorithms.

Non-concurrent computation effort, in systems with no message delay, are counted by a method similar
to that of Lamport’s logical clocks [10, 12]. Every agent holds a counter of constraint checks performed.
Every message carries the value of the sending agent’s counter. When an agent receives a message it updates
its counter to the largest value between its own counter and the counter value carried by the message. By
reporting the cost of the search as the largest counter held by some agent at the end of the search, we achieve
a measure of concurrent search effort that is close to Lamport’s logical time [10]. This measure can be
upgraded to count the number of non-concurrent constraint checks perfoMied's), thus incorporate
the local computational effort of agents in each step [12].

The measure of non-concurrent number of constraints ché¢k&’(C's)is implementation independent.
This makes it more representative than run-time, which can only be measured on multi-machine implemen-
tation and is dependent on many implementational details in particular on communication among machines.
The present paper evaluates the proposed algorithm in the presence of message delays. In order to control
message delays, an asynchronous simulator must be used. Controlling the delay of messages is another rea-
son to avoid multi-machine implementation. Again, leading to the implementation independent choice of the
NCCC's measure over run-time.
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The experimental evaluation includes four sets of experiments. In the first set the effect of concurrent
computation is evaluated by comparing different versions of concurrent search, that have different levels of
concurrency. In the second set of experiments the rufiefcD B is compared to the three best perform-
ing search algorithms, synchronous conflict backjumpifi@ () [3, 24], asynchronous forward-checking
(AFC) [13] and asynchronous backtracking87") [20, 1]. The third set of experiments checks the behav-
ior of Concurrent Searcland the other algorithms in real world systems with random message delays. The
last set of experiments investigates the heuristic used to determine the level of concurrendy @idheB
algorithm. The algorithm is run using variogtepslimit values with and without message delays.

All experiments were conducted using an asynchronous simulator. To simulate asynchronous agents, the
simulator implements agents dasva Threads Threads (agents) run asynchronously, exchanging messages.
After the algorithm is initiated, agents block on incoming message queues and become active when messages
are received. Experiments were conducted on random networks of constraints. The network of constraints,
in each of the experiments, is generated randomly by selecting the probgabitifya constraint among any
pair of variables and the probabilify, for the occurrence of a violation among two assignments of values
to a constrained pair of variables [15, 18]. All four sets of experiments, were conducted on networks with 15
agents ¢ = 15) and 10 values for each agent’s variabte=t 10). The only exception are the experiments
in Section 5.2 which compare the run of the algorithms on problems of different sizes, where problem sizes
reachn = 20. For each pair of density and tightness valuel (2) 50 different random problems were
solved by each algorithm and the results presented are the average of these 50 runs.

5.1 Evaluation of concurrency within ConcBT

To investigate the effect of concurrency, one needs to compare the performaboraafrrent Searchvith

and without splitting and dynamic splitting. To this end, the simplest concurrent search algaritha3 7T,

was run in a 1EPA version, 5CPA version and a version which performs dynamic re-splitting (using a
steplimit of 35). TheConcBT algorithm is used in this set instead @bncD B to eliminate the effect of
Dynamic Backtrackingn the results. The GPAversion is completely sequential and serves as the baseline
for comparison to the concurrent versions.

In the first set of experiments the density of the constraint networks is-(0.7). The value of tightness,
p2 was varied between 0.1 and 0.9, to cover all range of problem difficulty. Results show averages over 50
runs.

Figure 8 shows the computational effort, the number of non-concurrent constraint checks, for all three
versions. It is easy to see that concurrency improves the search efficiency and that dynamic re-splitting
improves it further. For the harder problem instances the improvement is by a factor of 6 over the 1-CPA
version and a factor of 3 over the 5-CPA version. Figure 9 shows the results in total number of messages
sent. Clearly, the concurrent versions, either the 5-CPA version or the re-split one, circulaté' fudsen
the network. However, the interesting result is that even thatighcBT with dynamic splitting increases
the number of traversing P As during search, the effect on the total number of messages is negligible. The
dynamic splittingConcBT does send more messages concurrently but does so during a shorter period of
time, resulting in a low amount of total communication.
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Figure 8: Number of non-concurrent constraint checks in different versions of ConcBT.
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Figure 9: Total number of messages sent in different versions of ConcBT.

5.2 Comparing to other DisCSP algorithms

In order to evaluate the performance of concurrent dynamic backtrackimgeOB it is compared to rep-

resentatives of the two families of algorithms in the literature. For sequential assignment (synchronous)

DisCS P algorithmsConflict-based Backjumping selected [24, 3]C'BJ is an improved version of syn-

chronous backtracking [20],

agent.

in which agents proaemsflict setsn order to backtrack directly to the culprit

Asynchronous Forward-checkingl £'C) [13] is an algorithm which performs sequential assignments

like CBJ. A special message which carries the current partial assignr@egntlf is passed among agents

and serves as a token to synchronize agent’'s assignments. An agent which successfully assigned its vari-
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Figure 10: Number of non-concurrent constraint checks performed by ConcDB, ABT and CBJ on low den-
sity DisCSPs.

able and added its assignment to €& A, beside sending th€ P A forward for the next agent to assign it,
sends copies of th€ P A to all unassigned agents which perform forward checking concurrently and asyn-
chronously. As a result, the agents detect early a need to backtrack. Agents initiate a backtrack procedure by
sendingNot OK messages to all agents which may holddh A. An agent that receivesNot OK message
and then the inconsisteatP A, backtracks as i’ B.J by sending th&’' P A back to the culprit agent.

Asynchronous BacktrackingA(BT) [20, 1] is the best performing asynchronous backtracking algorithm.
In ABT agents assign their variables asynchronously, and send their assignnasnivessages to other
agents to check against constraints. A fixed priority order among agents is used to break conflicts. Agents
inform higher priority agents of their inconsistent assignment by sending them the inconsistent partial as-
signment in aVogood message. In the present implementatiom&T’, Nogoods are resolved and stored
according to the method presented in [1]. Based on Yokoo’s suggestions [20], agents read in every step, all
messages received before performing computation. This forms the best performing versiBii of

In [20], Yokoo reports that the Asynchronous Weak Commitment algorithi# () is faster thamd BT .
However, in order to be completéV C requires agents to hold exponential space (fargoods). This
makesAW C' unfeasible for hard instances of largesCSPs. According to Yokoo, this problem can be
solved by limiting the size of th& ogood storage, making. a non-complete algorithm.

Figure 10 presents the number of non-concurrent constraint checks perforrfed by B, CBJ, AFC
and ABT on problems with low constraint density;(= 0.4). For the harder problem instanc&nncDB
outperformsAFC by a factor of 1.5 ABT by a factor of 2.5 and CBJ by a factor of 3. Figure 11 presents
the total number of messages sent by the algorithms in the same run. When it comes to network load the
advantage of’oncD B over ABT and AF'C is larger (a factor of 4). As expected, the total network load of
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Figure 11: Total number of messages sent by ConcDB, ABT and CBJ on low density DisCSPs
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Figure 12: Number of non-concurrent constraint checks performed by ConcDB and ABT on high density
DisCSPs.

the synchronous algorithm, which maintains a single message throughout the search, is the smallest. Still,
the total number of messages senthiJ andConcD B are very close.

Figures 12 and 13 show similar results BrsC'S Ps with higher density f; = 0.7). The advantage of
ConcDB over ABT and CBJ in NCCC's is more pronounced on higher densiiyjsCSPs. On the

hardest instances;oncD B performs 6 times less non concurrent constraint checks A and 4 times

less tharC'BJ. AFC also performs better on deng&sC'S Ps. On the hardest instances it performs slightly
better thanConcD B. The total number of messages sentyncD B andC B.J are very close. However,

AFC sends 4 times more messages aigll” sends 6 times more messages than@@t andConcD B.
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Figure 14: Number ofVCCC's performed by ConcDB, ABT CBJ and AFC on the hardest instances of
DisCSPs with increasing sizegs, (= 0.4)

22



1400000

1200000 ——ABT
1000000 4 - -« —ConcDB
8 800000 R
© 600000 -
—-#--AFC
400000
200000 4
il = 1

Figure 15: Number ofVCCC's performed by ConcDB, ABT CBJ and AFC on the hardest instances of
DisCSPs with increasing sizes, (= 0.7)

Figures 14 and 15 present the number of non concurrent constraint checks performed by the different
algorithms on problems with increasing sizes (number of agents). For every size, the result of the most
hardest instanceBisC'SPs are presented. Clearly the performanced@T andC'BJ deteriorates faster
than that ofA F'C andC'oncD B when the number of agents increments.

5.3 Performance in the presence of message delays

An important part of the experimental evaluation is to measure the impact of imperfect communication on the
performance of distributed search bsC'S Ps. Message delay has the potential of changing the behavior of
distributed search algorithms [5]. For the simplest possible algorithm, synchronous backtradkifig20],

the effect of message delay is very clear. The number of computation steps is not affected by message delay
and the delay in every step of computation is the delay on the message that triggered it. Therefore, the
total time of the algorithm run can be calculated as the total computation time, plus the total delay time of
messages. This is true also for versions of synchronous backtracking that perform backjumping [24, 3].

In the presence of concurrent computation, the time of message delays must be added to the total algo-
rithm time only if no computation was performed concurrentljo achieve this goal a simulator is used,
which counts message delays in terms of computation steps and adds them to the accumulated run-time when
no computation is performed concurrently [27].

The asynchronous simulation of message delays is essential for controlling the experimental evalua-
tions. The evaluated algorithms must be run in a controllable environment that can correctly measure
non-concurrent computational effort. In that respect the evaluation of diffésesit’'S P algorithms un-
der mesaage delay performedifiC'CC's are truly implementation independent and concurrent. This is in
strong contrast to run-time measures on multimachines, that depend strongly on the system.
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Figure 16: Number ofVNCCC's performed by ConcDB, ABT, CBJ and AFC on low denditisCSPswith
random message delay(= 0.4)

In order to simulate message delays, all messages are delivered by a dedicaied thread. The
mailer holds a counter of non-concurrent constraint checks performed by agents in the system. This counter
represents the logical time of the system [10] and is called tiggcal Time Counte(LT'C). Every message
delivered by the mailer to an agent, carries f1EC value of its delivery to the receiving agent. An agent
that receives a message updates its counter to the maximum value between the f&téivadd its own
value. Next, it performs the computation step, and sends its outgoing messages with the value of its counter,
incremented by the number 6fC's performed during the step.

The mailer simulates message delays in terms of non-concurrent constraint checks. When the mailer
receives a message, it first checks if fHEC value that is carried by the message is larger than its own value.
If so, it increments the value of thel'C'. Then a delay for the message (in numbeANgf'C'C's) is selected.
Each message is assignededivery_time which is the sum of the current value of th&'C' and the selected
delay (inCCs), and placed in theutgoing_queue. The Mailer delivers messages, witlelivery_time
less or equal to the mailer’s currebi'C' value, to their destination agents.

When there are no incoming messages, and all agents are idle, dsitheing_queue is not empty
(otherwise the system is idle and a solution has been found) the mailer increases the valugl@f tioethe
value of thedelivery_time of the first message in the outgoing queue and delivers the first message.

The non-concurrent run time reported by the algorithm, is the lay&st value that is held by some
agent at the end of the algorithm run. By incrementinglifi&’' only when messages carbf’C's with values
larger than the mailer87'C value, constraint checks that were performed concurrently are not counted twice.
The actual computational cost during any step is in principle different for diffefgeC'S P algorithms.
Measuring non-concurrent constraint checks also enables to evaluate algorithms in which agents perform
computation which is not triggered or followed by a message.
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Figure 17: Number ofNCCC's performed by ConcDB, ABT, CBJ and AFC on low dendilisCSPswith
random message delay(= 0.7)

Figures 16 and 17 present the results of the third set of experiments in which the four algorithms were
run on systems with random message delays. Each message was delayed between 10 to 50 non concurrent
constraint checks and the results are presented for low and high density constraint networks. As expected,
CBJ is affected most when messages are delayed. In a sequential assignments (synchronous) algorithm there
is no concurrent computation by agents. Therefore, each message delay is added to the final run-time result.
Message delays have also a strong effecddfC’ since, although it performs concurrent computation, its
assignments are performed sequentially. The performance of asynchronous backtracking also deteriorates in
the presence of random message delays, while the effect on concurrent search is minor. The advantage of
concurrent search over both synchronous and asynchronous backtracking in the presence of message delay is
connected to the properties of these algorithms. Previous studies repotfigterforms best when it reads
multiple messages before performing computation [24, 1]. When messages are randomly delayed, agents in
ABT are more likely to perform computation triggered by a single message. This explains the deterioration
in performance ofdA BT in the presence of random message delays.

To understand the robustness@dncurrent Searclio message delay imagine the following example.
Consider the case whet®ncD B splits the search space multiple times and the numbérfofis is larger
than the number of agents. In systems with no message delays this would mean that soniéfof thare
waiting in incoming queues, to be processed by the agents. This delays the search on the sub-search-spaces
they represent. In systems with message delays, this potential waiting is caused by the system. By choosing
the rightsteps_limit, agents can be kept busy at all times, performing computation against consistent partial
assignments.

To further investigate the different behavior of the four algorithms in the presence of imperfect commu-
nication, it is interesting to examine the algorithms reaction to message delays of different sizes.
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Figure 18: Number of non-concurrent constraint checks performed by ABT, AFC and ConcDB on systems
with increasing message delays

The effect on synchronousBJ is linear (as expected) and its slope is as steep as the size of the de-
lay. This makes it impossible to display synchronous search togetherA#sth, AF'C and ConcDB.
Figure 18 presents the impact, in number of non-concurrent constraint checks, of different sizes of random
message delays, on Asynchronous Backtracking, Asynchronous Forward-checking and on Concurrent Dy-
namic Backtracking. As expected,F'C is affected most when the average size of delays increases. The
difference in robustness betwedBT andConcD B is striking. While ABT performs a linearly growing
number of NCCC's, ConcD B remains relatively constant. Over a range of average random delay of 200
CCs,ABT’s performance deteriorates by a factor of 4.5, whileGamcD B the increase is very slow and
the overall factor is about 1.5.

5.4 The impact of thestepslimit

The level of concurrency of th€oncD B algorithm is determined by the heuristic upon which the agents
decide when to send a split message. Using the heuristic suggested in Section 3, the concurrency of the
algorithm can be controlled by selecting a good value tethpslimit. Figures 19 and 20 present the number

of non concurrent constraint checks performedtyncD B using variousstepslimits. The algorithm was

tested with and without message delay. It is clear from the above figures that the choice oktelpstimit
deteriorates the performance@dncD B when run on systems with message delays. The effeCtonnD B

running with optimal communication is quite small. These results are not surprising considering the results
for CBJ andConcD B presented in Section 5.2. When the value of dkepslimit increases, the level of
concurrency decreases and the behavior of the algorithm is closer to the behavior of a single sequential search
procedure €C'BJ. As for CBJ, it performs well when there are no message delays but performs poorly in
the presence of message delay. Figures 21 and 22 present the performance of the algorithm for smaller
stepslimits. The stronger effect of the growistepslimit in the presence of message delay is clear in these
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Figure 19: Number of non-concurrent constraint checks performed by ConcDB for increagingimits
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Figure 20: Number of non-concurrent constraint checks performed by ConcDB for increagingimits

(p1=0.7)

figures. An interesting observation is that with no message delays, the highest level of concurrency does not
produce the best performance.

6. Conclusions

Search algorithms oisC'SPs can be categorized into two families. Single search process algorithms
(SPAs) and multiple (concurrent) search process algorithms (MPAs). MPAs are alsacoaltetirent search
algorithms C'S As). The state of single process algorithms is defined$iggle tuple of assignmentsne for
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Figure 21: Number of non-concurrent constraint checks performed by ConcDB for a smaller range of
steps_limits (py = 0.4)
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Figure 22: Number of non-concurrent constraint checks performed by ConcDB for a smaller range of
steps_limits (p1 = 0.7)

each agent. When this set of assignments is complete (containing assignments to all variables of all agents)
and consistent, the SPA stops and reports a solution. Single search process algorithms can be asynchronous,
like ABT [20, 1] or synchronousSBT [20], CBJ [24, 3]). In concurrent search, multiple concurrent
processes search non intersecting parts of the global search spate«f &P ([23, 8, 17]). All agents in

a M P A participate in every search process, since each agent holds some variables of the search space. As a
result, concurrent search is an asynchronous distributed process.
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The Concurrent Dynamic Backtracking search algoritt@far{cD B) provides an efficient method for
several search processes to search concurrently for a solutioPie(aSP. The independent random or-
dering of search on multiple search processes generates an efficient randomization that improves the overall
performance. Through a mechanism of dynamic splitting, the number of search processes can be enhanced in
some sub-search spaces, thus achieving load balancing in a natural way. The addition of Dynamic Backtrack-
ing to concurrent search, enables early termination of search processes on sub-spaces which do not lead to a
solution. An inconsistent subset can be found in one sub-space that rules out other sub-spaces as unsolvable.
Dynamic backtracking was found to account forl0% of search processes termination in the experiments
of section 5.2

The experimental behavior 6foncD B on randomDisC'S Ps clearly indicates its efficiency, compared
to algorithms of a single search process ik&.J, AFC andABT. This advantage is more pronounced on
realistic systems with random message delays where the performance of single process algorithms deterio-
rates whileC'oncD B is robust.
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