
Concurrent Search for Distributed CSPs∗

Roie Zivan and Amnon Meisels
Department of Computer Science,

Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

{zivanr,am}@cs.bgu.ac.il

Abstract

A distributed concurrent search algorithm for distributed constraint satisfaction problems (DisCSPs) is

presented. Concurrent search algorithms are composed of multiple search processes (SPs) that operate con-

currently and scan non-intersecting parts of the global search space. EachSP is represented by a unique

data structure, containing a current partial assignment (CPA), that is circulated among the different agents.

Search processes are generateddynamically, started by the initializing agent, and by any number of agents

during search.

In the proposed,ConcDB, algorithm, all search processes performdynamic backtracking. As a conse-

quence of backjumping, a search space can be found unsolvable by a different search process. This enhances

the efficiency of theConcDB algorithm. Concurrent Dynamic Backtracking is an asynchronous distributed

algorithm and is shown to be faster than former algorithms for solvingDisCSPs. Experimental evaluation

of ConcDB, on randomly generatedDisCSPs demonstrates that the network load ofConcDB is similar

to the network load of synchronous backtracking and is much lower than that of asynchronous backtracking.

The advantage ofConcurrent Searchis more pronounced in the presence of imperfect communication, when

messages are randomly delayed.

Key Words: Constraints Satisfaction, Search, Distributed AI.

1. Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each holding its local con-

straint network, that are connected by constraints among variables of different agents. Agents assign values

to variables, attempting to generate a locally consistent assignment that is also consistent with all constraints

between agents (cf. [22]). To achieve this goal, agents check the value assignments to their variables for local

consistency and exchange messages with other agents, to check consistency of their proposed assignments

against constraints with variables owned by different agents. [20, 1].

Distributed CSPs are an elegant model for many every day combinatorial problems that are distributed by

nature. Take for example a large hospital that is composed of many wards. Each ward constructs a weekly

timetable assigning its nurses to shifts. The construction of a weekly timetable involves solving a constraint

satisfaction problem for each ward. Some of the nurses in every ward are qualified to work in theEmergency

∗. Supported by the Lynn and William Frankel center for Computer Sciences and the Paul Ivanier Center for Robotics and Production

Management.

1



Room. Hospital regulations require a certain number of qualified nurses (e.g. for Emergency Room) in each

shift. This imposes constraints among the timetables of different wards and generates a complex Distributed

CSP [19].

A search procedure for a consistent assignment of all agents in aDisCSP , is a distributed algorithm. An

intuitive way to make the distributed search process onDisCSPs efficient is to enable agents to compute

concurrently. Concurrent computation by agents can result in a shorter overall time of computation for finding

a solution.

One method for achieving concurrency for search onDisCSPs is for agents to perform assignments

concurrently. In order to avoid the waiting time of a single backtrack search, agents compute assignments

to their variables asynchronously. In asynchronous backtracking algorithms agents assign their variables

without waiting for information about all relevant assignments of higher priority agents [21, 16, 1]. In order

to make asynchronous backtracking correct and complete, all agents share a static order of variables and the

algorithm keeps data structures forNogoods that are discovered during search [20, 1].

The present paper proposes a different way of achieving concurrency for search. In order to achieve

shorter overall run-time, concurrent search runs multiple search processes on aDisCSP. All agents partici-

pate in all search processes, assigning their variables and checking for consistency with constraining agents.

All search processes are performed asynchronously by all agents, thereby achieving concurrency of computa-

tion and shortening the overall time of run for finding a global solution. In each search process agents perform

assignments sequentially. Agents and variables are ordered randomly on each of the search processes, diversi-

fying the sampling of the search space. Concurrent search distributes among agents a dynamically changing

number of search processes. The degree of concurrency during search changes dynamically and enables

automatic load balancing.

In order to exchange complete information about assignments of all agents,Concurrent Searchcirculates

multipleCurrent Partial Assignments(CPAs) among all agents. EachCPArepresents one search process (SP )

and each search process scans a different part of the global search space. The search space is split dynamically

at different points on the path of the search process by agents generating additionalCPAs. The splitting and

re-splitting of the search space is performed independently by agents and is thus a distributed process. Splits

are first attempted by agents residing at the top of the sub search tree that is being split. When the agent has

no opportunity to split, the splits move down to agents that are lower in the split sub-tree.

It is well known that search algorithms on CSPs benefit from backjumping [14, 6, 4]. An elegant form of

backjumping which stores explenations for the removal of values, isDynamic Backtracking[7]. This method

was later adapted to distributedCSP algorithms by [2]. The best Concurrent Search algorithm, Concurrent

Dynamic Backtracking (ConcDB), presented in this paper, performs dynamic backtracking (DB) as in [2] on

each of its concurrent sub-search spaces. Since search processes are dynamically generated byConcDB, the

performance of backjumping in one search space can indicate that other search spaces are unsolvable. This

feature, combined with the random ordering of agents in each search process, enables early termination of

search processes that are discovered to be unsolvable. The combination ofConcurrent SearchandDynamic

Backtrackingin ConcDB result in a fast algorithm, which outperforms previous complete search algorithms

both sequential assigning (synchronous) and Asynchronous Backtracking by a large factor (See Section 5).

2



Concurrent Search, as proposed in the present paper and in [23, 25], may seem similar to former ap-

proaches of parallelism. Splitting the search space at the first agent and running several search processes for

each of the values of the first agents’ domain is part of interleaved search in [8]. The possibility of dynamic

allocation of predefined search slots for multiple asynchronous backtracking search processes was reported

in [17]. The performance of multiple asynchronous backtracking search shows a small improvement for two

asynchronous backtracking search processes and deteriorates for larger concurrency [8]. On the other hand,

Concurrent Searchas presented in the present study improves the performance of single search process, both

sequential and asynchronous backtracking, by a large factor. (see Section 5).

Distributed constraint satisfaction problems (DisCSPs) are presented in section 2. Section 3 presents

the principles and mechanism ofConcurrent Searchalong with a detailed description of Concurrent Dynamic

Backtracking. The method for terminating SPs which are shown to be unsolvable during backjumps, is

presented in section 3.3. A correctness and completeness proof forConcurrent Search, and in particular for

ConcDB, is presented in section 4.

Section 5 presents an extensive experimental evaluation, which demonstrates multiple advantages of

ConcDB. First, the features of concurrent search are investigated. Multiple search processes are better

than one and dynamic generation of search processes makes the algorithm perform best (section 5.1). Next,

a comparison ofConcDB to existing algorithms for solvingDisCSPs, is presented in section 5.2. The

impact of message delay on the performance of concurrent search is evaluated in Section 5.3.ConcDB is

compared toCBJ , AFC andABT in the presence of random message delays. Sequential assigning algo-

rithms are affected the most by message delays. Concurrent dynamic backtracking is much more robust to

message delay than asynchronous backtracking. The delay of messages has a strong impact on the run of

distributed search algorithms [5, 27]. Finally, the heuristic which is used by agents to determine the level of

concurrency is evaluated in Section 5.4. This experiment demonstrates the size of the effect that the level of

concurrency has on the performance of the algorithm in the presence of message delay. Conclusions on the

advantages of using multiple DB search processes inDisCSP search are presented in section 6.

2. Distributed Constraint Satisfaction

A distributed constraint network (or a distributed constraint satisfaction problem -DisCSP) is composed of a

set ofk agentsA1, A2, ..., Ak. Each agentAi contains a set of constrained variablesXi1 , Xi2 , ..., Xini
. Con-

straints orrelationsR are subsets of the Cartesian product of the domains of the constrained variables [4]. For

a set of constrained variablesXis
, Xjl

, ..., Xmh
, with domains of values for each variableDis

, Djl
, ..., Dmh

,

the constraint is defined asR ⊆ Dis
×Djl

× ...×Dmh
. A binary constraint Rij between any two variables

Xj andXi is a subset of the Cartesian product of their domains;Rij ⊆ Dj ×Di. In a distributed constraint

satisfaction problemDisCSP, the agents are connected by constraints between variables that belong to dif-

ferent agents (cf. [21, 19]). In addition, each agent has a set of constrained variables, i.e. alocal constraint

network.

An assignment (or a label) is a pair< var, val >, wherevar is a variable of some agent andval is a value

from var’s domain that is assigned to it. Apartial assignment(or a compound label) is a set of assignments

3



of values to a set of variables. Asolution to aDisCSPis a partial assignment that includes all variables of

all agents, that satisfies all the constraints. Following all former work onDisCSPs, agents check assignments

of values against non-local constraints by communicating with other agents through sending and receiving

messages. An agent can send messages to any one of the other agents.

One simple protocol for checking constraints, that appears in many distributed search algorithms, is to

send a proposed assignment< var, val >, of one agent to another agent. The receiving agent checks the

compatibility of the proposed assignment with its own assignments and with the domains of its variables and

returns a message that either acknowledges or rejects the proposed assignment. The following assumptions

are routinely made in studies ofDisCSPs and are assumed to hold in the present study [20, 2].

1. All agents hold exactly one variable.

2. The amount of time that passes between the sending of a message to its reception is finite.

3. Messages sent by agentAi to agentAj are received byAj in the order they were sent.

4. Every agent can access the constraints in which it is involved and check consistency against assign-

ments of other agents.

3. Concurrent Search

Concurrent Searchis a family of algorithms which perform multiple concurrent backtrack search processes

asynchronously on disjoint parts of theDisCSPsearch-space. Each search process includes all variables and

therefore involves all agents. Each agent holds a set of data structures, one for each search process. These data

structures, which we termSearch Processes (SPs), include all the relevant data for the state of the agent on

each of the search processes. Agents in concurrent search algorithms pass their assignments to other agents

on a special type of message - a Current Partial Assignment (CPA). EachCPArepresents one search process,

and holds the agents’ current assignments in the corresponding search process. An agent that receives aCPA

tries to assign its local variables with values that are not conflicting with the assignments already on the

CPA, using only the current domains in theSP that is related to the receivedCPA. The uniqueness of the

CPAfor every search space ensures that assignments are not done concurrently (and conflictingly) in a single

sub-search-space [25, 26].

An agent can generate a set ofSPs and correspondingCPAs that split the search space of a single

SP whoseCPA has passed through that agent, by splitting the domain of one of its variables. Agents can

perform splits independently and keep the resulting data structures (SPs) privately. All other agents need not

be aware of the split, they process allCPAs in exactly the same manner (see section 3.2).CPAs are created

either by the Initializing Agent (IA) at the beginning of the algorithm run, or dynamically by any agent that

splits an active search-space during the algorithm run. A simple heuristic of counting the number of times

agents pass a givenCPA (without finding a solution), is used to determine the need for re-splitting of the

search-space traversed by thatCPA. This generates a mechanism of load balancing, creating more search

processes on heavily backtracked search spaces.

4



Figure 1: SimpleConcurrent Searchwith two CPAs

Figure 1 presents an example of a DisCSP, searched concurrently by two search processes represented by

two CPAs,CPA1 andCPA2. Each of the four agentsA1 to A4, holds two Search Processes (SPs). The

domains of all four agents are the same -{1..4}. The current domains of the SPs are shown in Figure 1. The

domains on the left represent the state after 3 assignments toCPA1. The domains on the right hand side of

figure 1 represent the state after the second assignment toCPA2.

AgentA1 has assigned the value 1 onCPA1 and the value 3 onCPA2. The values that are left in each of

its domains are 2 inSP1 and 4 inSP2. AgentA3 has assigned the value 2 toCPA1, having failed to assign

the value 1. This leaves its current domain, forSP1, with the values [3,4]. The two CPAs are traversing non

intersecting sub search spaces in whichCPA1 is exploring all tuples beginning with 1 or 2 for agentA1, and

CPA2 all tuples beginning with 3 or 4.CPA1 is depicted on the LHS of figure 1 andCPA2 is on the RHS.

CPA1 moves among the agents in the orderA1 → A2 → A3. CPA2 moves in the orderA1 → A4 →...

A backtrack operation is performed by an agent which fails to find a consistent assignment with the

partial assignment on theCPA that it is currently holding. A backtrack operation sends aCPA backwards,

requesting the receiving agent to revise its assignment on theCPA. Agents that have performed dynamic

splitting, have to collect all of the returningCPAs, of the relevantSP , before declaring that a sub-search-

space does not contain a solution. In this case all consistent values of the split domain have been sent forward

on someCPA and failed, which means the agent must perform a backtrack operation.

5



The search ends unsuccessfully, when allCPAs return for backtrack to the IA and the domain of the first

variable of eachCPA is empty. In this case all the search processes are stopped. The search ends successfully

if one CPA contains a complete assignment, a value for every variable in theDisCSP .

There is no synchronization between the assignments performed in differentSPs and the splitting of

different CPAs. Due to the random choice of the next agent and the dynamic asynchronous splitting of

search spaces, the steps of agents in different search process are interleaved in a non predefined order. This

makes Concurrent Search algorithms asynchronous [11].

The following subsections present a detailed description of Concurrent Search.

3.1 Main objects of Concurrent search

The main data structure that is used and passed between the agents is acurrent partial assignment (CPA).

A CPAcontains an ordered list of triplets< Ai, Xj , val > whereAi is the agent that owns the variableXj

andval is a value, from the domain ofXj , assigned toXj . This list of triplets starts empty, with the agent

that initializes the search process, and includes more assignments as it is passed among the agents. Each

agent adds to aCPA that passes through it, a set of assignments to its local variables that is consistent with

all former assignments on theCPA. If successful, it passes theCPAto the next agent. If not, itbacktracks, by

sending theCPAto the agent from which it was received.

Splitting the search space on some variable divides the values in the domain of this variable into several

groups. Each sub-domain defines a unique sub-search-space and a uniqueCPA traverses this search space.

Dynamic splitting is triggered by the number of assignment steps performed on aCPA, without returning

back to its initiator. This is an intuitive meaning of thrashing and can be based on a simple threshold for the

number of unsuccessful assignments -steps limit.

Consider the constraint network that is described in figure 2. The three agents own one variable each, and

the initial domains of all variables contain four values{1..4}. The constraints connecting the three agents

are: X1 < X2, X1 > X3, andX2 < X3. The initial state of the network is described on the LHS of

Figure 2. In order to keep the example small, no initial split is performed, only dynamic splitting. The value

of steps limit in this example is 4. The first 5 steps of the algorithm run produce the state that is depicted on

the RHS of Figure 2. The circled values in the current domains of agentsX1 andX2 are the assigned values

on theCPA. The current domain ofX2 had only two values left,[3, 4]. X3 is now holding theCPA and has

no assignment that is consistent with it.

The run of the algorithm during these 5 steps is as follows:

1. X1 assigns its variable the value 1, and sends toX2 aCPA with a step counterCPA steps = 1.

2. X2 assigns its variable the value 2, and sends theCPA with both assignments, and withCPA steps

= 2, toX3.

3. X3 cannot find any assignment consistent with the assignments on theCPA. It passes theCPA back

to X2 to reassign its variable, withCPA steps = 3.

4. X2 reassigns its variable with the value 3, and sends theCPA again toX3 after raising the step counter

to 4.

6



Figure 2: Initial state and the state after theCPA travels 5 steps without returning to its initializing agent

Figure 3: The new non intersecting search spaces now searched using two differentCPAs

5. X3 receives theCPA with X2’s new assignment.

In the current step of the algorithm, agentX3 receives aCPA which has reached thestep limit. It has

to generate a split operation. Before trying to find an assignment for its variable,X3 sends a split message to

X1 which is theCPAs generator and changes the value of theCPA steps counter to 0. Next, it sends the

CPA to X2 in a backtrack message. The algorithm run proceeds as follows:

• WhenX1 receives the split message it performs the following operations:

7



– Creates a new (empty domain)SP data structure.

– Deletes values3 and4 from its original domain and inserts them into the domain of the new split

SP .

– Creates a newCPA and assigns it with3 (a value from the new domain).

– Sends the newCPA to a randomly selected agent.

• Other agents that receive the newCPA create newSPs with a copy of the initial domain.

The resulting split search-spaces are depicted in Figure 3. Circled values represent those that are currently

assigned on the correspondingCPA1 or CPA2. After the split, twoCPAs are passed among the agents.

The twoCPAs perform search on two non intersecting search-spaces. In the originalSP after the split, X1

can assign only values1 or 2 (see LHS of Figure 3). The search on the original SP is continued from the same

state it was in before the split. AgentsX2 andX3 continue the search using their current domains to assign

the originalCPA. Therefore, the current domain ofX2 (onSP1) does not contain values 1 and 2 which were

eliminated in earlier steps. In the newly generated search space,X1 has the values3, 4 in its domain. Agent

X1 assigns3 to its variable and the other agents that receiveCPA2 check the new assignment against their

full domains (RHS of figure 3).

Every agent that receives aCPA for the first time, creates a local data structure which we call asearch

process (SP). This is true also for the initializing agent (IA), for each createdCPA. TheSPholds all data on

current domains for the variables of the agent, such as the remaining and removed values during the path of

theCPA.

The structure of theID of a CPAand its correspondingSPis a pair< A, j >, whereA is the ID of the

agent that created the CPA andj is the number of CPAs this agent created so far. This enables all agents to

createCPAs with a uniqueID. When a split is performed during search, the generatedCPA has a uniqueID

and carries theID of theCPA from which it was split.

Although any agent can split its domain, the current version of the algorithm splits search spaces as high

as possible in the search tree. This generates split sub-search-spaces that are as large as possible and a larger

number of agents participate in the divided search procedure. When agents have no further opportunity to

split anSP because of lack of values in their current domain, split messages are transferred down the search

tree to agents lower in the current order of the search (See Figure 5, procedureperform split, lines 2, 8

and 9). Note that different concurrent search processes are ordered differently. Therefore, the splitting of the

search space occurs at different agents in different concurrentSPs.

3.2 General Concurrent Search

The following terminology is used in the description of concurrent search algorithms:

• CPA generator: EveryCPAcarries theID of the agent that created it.

• origin SP : an agent that performs a dynamic split, holds in each of the newSPsthe ID of theSP it

was split from (i.e. oforigin SP ). An analogous definition holds fororigin CPA. Theorigin SP

of anSPthat was not created in a dynamic split operation is its ownID.

8



Concurrent Search:

1. done← false

2. if (IA) then initialize SPs

3. while(not done)

4. switch msg.type

5. split: performsplit

6. stop: done← true

7. CPA: receiveCPA

8. backtrack: receiveCPA

receiveCPA:

1. CPA←msg.CPA

2. if (first received(CPA.ID))

3. createSP(CPA.ID)

4. if (CPA.generator = ID)

5. CPA.steps← 0

6. else

7. CPA.steps ++

8. if (CPA.steps =steps limit)

9. splitter ← select assigned agent

10. CPA steps← 0

11. send(split msg splitter)

12. if (msg.type =backtrack)

13. removelast assignment

14. assign CPA

assignCPA:

1. CPA← assignlocal

2. if (is consistent(CPA))

3. if (is full(CPA))

4. report solution

5. stop

6. else

7. send(CPA, nextagent)

8. else

9. backtrack

initialize SPs:

1. for i ← 1 todomain size

2. CPA← createCPA(i)

3. SP[i].domain← first var[valuei]

4. createSP(CPA.ID)

5. assign CPA

Figure 4: Main and Assign parts of Concurrent Search

• split set: the set ofSP IDs, stored in anorigin SP . Everyorigin SP holds in itssplit set theIDs

of all theSPs for which it is theirorigin (i.e. all SPs which were split from it by the agent holding

it). For every activeSP , the onlysplit set relevant is thesplit set of its origin SP .

• steps limit: the number of steps (from one agent to the next) that will trigger a split, if theCPAdoes

not find a solution, or does not return to its generator.

The messages exchanged by agents in concurrent search are the following:

• CPA - the message carrying aCurrent Partial Assignment.

• backtrack msg- a CPA sent in a backtrack operation.

• stop - a message indicating the end of the search.

9



backtrack:

1. delete(CPA.ID fromorigin SP.split set)

2. if (origin SP.split set is empty)

3. if (IA)

4. CPA← no solution

5. if (no activeCPAs)

6. reportno solution

7. stop

8. else

9. send(backtrack, last assignee)

10. else

11. mark fail(CPA)

perform split:

1. if (not backtracked(CPA))

2. var← select split var

3. if (var 6= null)

4. createsplit SP(var)

5. createsplit CPA(SP.ID)

6. add(CPA.ID toorigin SP.split set)

7. assign CPA

8. else

9. send(split, next agent)

stop:

1. send(stop, all other agents)

2. done← true

Figure 5: Backtrack and Split for Concurrent Search

• split - a message that is sent in order to trigger a split operation. Contains theID of theSPto be split.

Figures 4 and 5 present the functions which are performed in any type of concurrent search algorithm.

The main function of the algorithm and functions that perform assignments on theCPA when it moves

forward are presented in Figure 4.

• The main functionConcurrent Searchis run by all agents. If it is run by theinitializing agent (IA), it

initializes the search by creating multipleSPs, assigning each SP with one of the first variable’s values.

After initialization, it loops forever, waiting for messages to arrive.

• receiveCPA first checks if the agent holds aSPwith theID of thecurrent CPAand if not, creates a new

SP. If the CPA is received by its generator, it changes the value of the steps counter (CPA steps)

to zero. This prevents unnecessary splitting. Otherwise, it checks whether theCPA has reached the

steps limit and a split must be initialized (lines 7-9). The splitting agent, which we termsplitter, is

selected to be any one of the assigned agents (line 9). A specific heuristic for splitting is to send the

split message to theCPA generator (as mentioned above theCPA generator is the first part of any

CPA ID). This is equivalent to splitting the search tree as high as possible. This specific policy is

implemented in theConcDB version of the present paper. Before assigning theCPA a check is made

whether theCPA was received in abacktrack msg. If so, the previous assignment of the agent which

is the last assignment made on theCPA is removed, beforeassign CPA is called (lines 12-13).

• assignCPA tries to find an assignment for the local variables of the agent, which is consistent with the

assignments on theCPA. If it succeeds, the agent sends theCPA to the selectednext agent (line 7).

If not, it calls thebacktrackmethod (line 9).

10



Figure 6: SimpleConcurrent Searchwith two CPAs

The rest of the functions of Concurrent Search are presented in Figure 5.

• Thebacktrack method is called when a consistent assignment cannot be found in aSP. Since a split

might have been performed by the current agent, a check is made, whether all theCPAs in thesplit set

of the origin CPA of the backtrackingCPA have also failed (line 2). If not then only the current

CPA is marked (line11) and no further action need take place. When all splitCPAs have returned

unsuccessfully, the search space of theSP is unsolvable and a backtrack operation is initialized.

In case of anIA, theSPand the correspondingorigin CPA are marked as a failure (lines 3-4). If all

otherCPAs are marked as failures, the search is ended unsuccessfully (line 6). If the current agent is

not theIA, a backtrack message is sent to the agent whose assignment is the latest of the assignments

included in the inconsistentCPA (line 9).

• The perform split method tries to find in theSPspecified in thesplit message, a variable with a

non-empty currentdomain. It first checks that theCPA to be split has not been sent back already,

in a backtrack message (line 1). If it does not find a variable for splitting, it sends a splitmessage to

next agent (lines 8-9). If it finds a variable to split, it creates a newSPandCPA, and callsassignCPA

to initialize the new search (lines 3-5). TheID of the generatedCPA is added to the split set of the

dividedSPsorigin SP (line 6).

Figure 6 extends the example presented in figure 1. For eachSP (except for the ones holding the cor-

respondingCPA), the content of theorigin and thesplit-setare displayed. Theorigin of all SPs except

11



for theSPs of agentA1 are their own IDs since they were not created in a dynamic split operation. Their

split-setincludes only their own ID, since they are not yet an origin of anySP created by a dynamic split

operation. In this example theSP < 1, 2 > held by agentsA2 andA3 will only be created when they will

first receive the correspondingCPA.

Theorigin of SP < 1, 2 > is theSP it was split from which is< 1, 1 >. The split set ofSP < 1, 2 >

is empty since the relevantsplit-setis only itsorigin SP ’s split-set. Thesplit-setof SP < 1, 1 >, includes

its ownID and the ID of theSP that was split from it which is< 1, 2 >

3.3 Concurrent Dynamic Backtracking

The method of backjumping that is used in theConcDB algorithm is based onDynamic Backtracking[7].

Each agent that removes a value from its current domain stores the partial assignment that caused the removal

of the value. This stored partial assignment is called aneliminating explanationby [7]. When the current

domain of an agent empties, the agent constructs a backtrack message from the union of all assignments in its

stored removal explanations. The union of all removal explanations is an inconsistent partial assignment, or a

Nogood[7, 20]. The backtrack message is sent to the agent which is the owner of the most recently assigned

variable in the inconsistent partial assignment.

In concurrent dynamic backtracking, a shortNogoodcan rule out multiple sub-search-spaces, all of which

contain no solution and are thus unsolvable. In order to terminate the corresponding search processes, an

agent that receives a backtrack message performs the following procedure:

• Detect theSP to which the received (backtrack)CPA either belongs or was split from.

• Check if theCPA corresponding to the detectedSP was split down its path.

• If it was:

– Send anunsolvable message to thenextagentof the relatedSP , thus generating a series of

messages along the former path of theCPA.

– choose a new unique ID for theCPA received and its relatedSP .

– continue the search using theSP andCPA with the new ID.

• Check if there are otherSPs which contain the inconsistent partial assignment received (by calling

function checkSPs), send correspondingunsolvable messages and resume the search on them with

new generatedCPAs.

The change of ID makes the resumed search process independent of the process of terminating unsolvable

search spaces. If the agents would have resumed the search using theID of the originalSP or of the received

CPA, a race condition would arise since there is no synchronization between the process of terminating

unsolvable search procedures to that of the resumed valid search procedure. In such a case, an agent that

received anunsolvable messagemight have marked an active search space as unsolvable.

12



ConcDB:

1. done← false

2. if (IA) then initialize SPs

3. while(not done)

4. switch msg.type

5. split: performsplit

6. stop: done← true

7. CPA: receiveCPA

8. backtrack: receiveCPA

9. unsolvable: mark unsolvable(msg.SP)

receiveCPA:

1. CPA←msg.CPA

2. if (unsolvable SP)

3. terminate CPA

4. else

5. if (first received(CPAID))

6. createSP(CPAID)

7. if (CPA generator = ID)

8. CPA steps← 0

9. else

10. CPA.steps ++

11. if (CPA steps = steps limit)

12. splitter ← CPA generator

13. send(split msg, splitter)

14. if (msg.type =backtrack)

15. checkSPs(CPA.inconsistentassignment)

16. lastsentCPA.remove last assignment

17. CPA← last sent CPA

18. if (sp.split ahead)

19. send(unsolvable,sp.next agent)

20. sp.renameSP

21. assign CPA

backtrack:

1. delete(currentCPA fromorigin split set)

2. if (origin split set is empty)

3. if (IA)

4. CPA← no solution

5. if (no activeCPAs)

6. reportno solution

7. stop

8. else

9. backtrack msg←
inconsistent assignment

10. send(backtrack msg,

lowest priority assignee)

11. else

12. mark fail(current CPA)

mark unsolvable(SP)

1. mark SP unsolvable

2. send(unsolvable, SP.nextagent)

3. for eachsplit SP in SP.origin.splitset

4. mark splitSP unsolvable

5. send(unsolvable, splitSP.nextagent)

check SPs(inconsistentassignment)

1. for eachsp in {SPs \ current SP}
2. if (sp.contains(inconsistentassignment))

3. send(unsolvable,sp.next agent)

4. lastsentCPA.remove last assignment

5. CPA← last sentCPA

6. sp.renameSP

7. assign CPA

Figure 7: Methods for Dynamic Backtracking ofConcDB

Theunsolvablemessage used by theConcDB algorithm, is a message not used in generalConcurrent

Search, which indicates an unsolvable sub-search-space. An agent that receives anunsolvable message

performs the following operations for the unsolvableSP and each of theSPs split from it:

13



• mark theSP as unsolvable.

• send anunsolvable message which carries the ID of theSP to the agent to whom the relatedCPA

was last sent.

Figure 7 presents the methodsConcDB, receiveCPAandbacktrack, that were changed from the general

description ofConcurrent Searchin Figures 4 and 5. Figure 7 contains also two additional methods needed

for addingDynamic Backtrackingto concurrent search.

In methodreceive CPA a check is made in lines 2,3 whether theSP related to the receivedCPA

is marked unsolvable. In such a case theCPA is not assigned and the relatedSP is terminated. If the

split limit is reached thesplit message is sent to the generator of theCPA to create the split as high as

possible in the search tree (lines 11-13). This is a specific heuristic forselect assigned agent of the general

receive CPA in Figure 4 (line 9 there). For a backtrackingCPA (lines 14-20) a check is made whether there

are other SPs which can be declared unsolvable. This can happen when the head (or prefix) of their partial

assignment (theircommon head i.e. CH) contains the received inconsistent partial assignment. Procedure

check SPs for every suchSP found, initiates the termination of the search process on the unsolvable sub-

search-space and resumes the search with a newly generatedCPA. Next, a check is made whether theSP

was split by agents who received theCPA after this agent (line 18) (this fact can be recorded on theCPA

when its holder initiates the split). If so, the termination of the unsolvableSP is initiated by sending an

unsolvable message. A new ID is assigned to the receivedCPA and to its relatedSP (line 20).

The inconsistent partial assignment received in thebacktrack message may rule out more than one active

search process. The check performed by the functioncheckSPstriggers the termination of these inconsistent

search processes. For each of the terminatedSPs a newCPA is created and the search process is resumed

after the culprit assignment is revised.

In methodbacktrack, the agent inserts the culprit inconsistent partial assignment into the backtrack

message (line 9) before sending it back in line 10. This is the only difference from the standard backtrack

method in Figure 5.

As described above, methodmark unsolvable is part of the mechanism for terminating SPs on unsolv-

able search spaces. The agent marks theSP related to the message received, and anySP split from it, as

unsolvable and sends unsolvable messages to the agents to whom the correspondingCPAs were sent.

4. Correctness of Concurrent Search

To prove correctness of a search algorithm forDisCSPs one needs to prove that it is sound, complete

and that it terminates. A central fact that can be established immediately is that agents send forward only

consistent partial assignments. This fact can be seen at lines 1, 2 and 7 of procedureassignCPA (Figure 4).

This implies that agents process, in procedureassignCPA, only consistentCPAs. Since the processing of

CPAs in this procedure is the only means for extending partial assignments, the following lemma holds:

Lemma 1 Concurrent Searchextends only consistent partial assignments. The partial assignments are re-

ceived via aCPA, extended and sent forward by the receiving agent.

14



The following theorem derives immediately from Lemma 1.

Theorem 1 Concurrent Searchis sound.

The only lines of the algorithm that report a solution are lines 3, 4 of procedureassignCPA. These lines

follow a consistent extension of the partial assignment on a receivedCPA. It follows that a solution is

reportediff aCPA includes a complete and consistent assignment. �

To prove completeness forConcurrent Search, one needs first to eliminate the stopping condition for the

first solution (lines 3-5 of functionassignCPA in Figure 4). Another important point is the exact manner in

which domains of values of variables are scanned, for the next consistent assignment. Values for assignment

are selected only in line 1 of the functionassignCPA. For the completeness proof one naturally assumes that

the functionassign local, that is run by every agent, scans all values of the current domain exactly once.

This is equivalent to the common assumption in all exhaustive backtracking algorithms that all values are

tried until a consistent assignment is found (cf. [9]).

With the above assumptions, the completeness ofConcurrent Searchis established in three steps. First,

for the case of a singleCPA. Then, for severalCPAs generated by theIA. Finally, for dynamic generation

of CPAs during search. The following lemma establishes the completeness of the1-CPAcase.

Lemma 2 Concurrent Searchsends forward in aCPA everyconsistent partial assignment.

To prove Lemma 2, one proceeds in analogy to the proof of completeness for centralized backtrack by

Kondrak and van Beek [9]. With no loss of generality assume that every agent holds one variable. Assume

that there is some consistent assignment(X1, X2, . . . Xk) of lengthk, that is not received by any agent. Take

the highestj < k, such that assignment(X1, X2, . . . Xj−1) is sent forward (by agentj − 1) on aCPA

that is received by agentj. There is at least one, sent by the initializing agent. Agentj, has a consistent

assignment(X1, X2, . . . Xj) that extends(X1, X2, . . . Xj−1), being a sub-tuple of(X1, X2, . . . Xk). When

agentj extends the receivedCPA, it succeeds in a consistent partial assignment(X1, X2, . . . Xj) and sends

it forward. This can be seen clearly in lines 1, 2, 7 of functionassign CPA in Figure 4. This contradicts the

above assumption on the maximality of the assignment(X1, X2, . . . Xj−1), that is sent forward. �

To complete the correctness proof one needs also to show thatConcurrent Searchterminates. The mes-

sages ofConcurrent SearchcarryCPAs and move either forward or backward. The number of backward

moves is finite, since each backward move deletes a value from the domain of the receiving agent (lines 10-11

of functionreceive CPA in Figure 4). To prove termination one needs to show that there can only be a finite

number of forward moves (i.e. carryingCPAs). Every agent keeps its current domain in the SP structure and

scans its values exactly once, for every different partial assignment received on aCPA. Every move forward

carries a consistent partial assignment (by Lemma 2). There is a finite number of different consistent partial

assignments, hence a finite number of forward moves inConcurrent Search.

Theorem 2 follows immediately.

Theorem 2 The 1-CPA version ofConcurrent Searchis complete and terminates.

15



Having shown the correctness ofConcurrent Searchfor a singleCPA, one needs to show correctness for

the more general case of multipleCPAs generated at the algorithm start.

Theorem 3 A version ofConcurrent Searchwhich includes a single split intok search processes at the

beginning of the search is complete and terminates.

Consider aCPA, Ci, that corresponds to a partial domain of one variable of the initializing agent and is

passed through the network of all agents. Each agentAj it passes through generates a data structureSPi with

all domains of its local variables (lines 2, 3 of procedurereceiveCPA). The only difference between the data

structures corresponding toCi and those that are generated for a1-CPA version ofConcurrent Searchis in

the structureSPi of the initializing agent. In every other agent, the data structureSPi and the code it runs are

exactly equal to those run forConcurrent Searchwith oneCPA. For agents different than theIA, the search

procedure ofCi scans exactly the same subspace that is scanned for the one-CPA version ofConcurrent

Search. Consequently, the search procedure corresponding toCi is correct.

The union of all domain values of the selected variable for a split (in theIA) is exactly equal to the

original domain of values of that variable. As shown above, the search sub-trees spanned by all agents that

are not theIA, are equal to those spanned for the1-CPAalgorithm. Each of those equal search subspaces

is scanned completely and correctly and all these scans terminate and are performed for every value of the

variable of theIA that was selected for the split operation. Consequently, the union of the sub-trees that

corresponds to each of theCPAs is exactly equal to the search tree that is spanned by the one-CPAversion of

Concurrent Search. �

The final step in the correctness proof ofConcurrent Searchis to show that a dynamic split operation

does not interfere with the correctness of the algorithm.

Theorem 4 Concurrent Searchwith dynamic splitting is complete and terminates.

Consider agentAi which is not the initializing agent, that receives asplit msg and runs the procedure

perform split. It sends forward one or more consistentCPAs that represent non intersecting sub-search-

spaces. The completeness and termination of the search on each of these sub-search-spaces follows from the

completeness of the search initialized by anyCPA of an initializing agent. AgentAi will declareno solution

by sending a backtrack message, only after all of its split-SPsfailed (lines 1, 2 of procedurebacktrack). In

other words, backtracking from multipleCPAs preserves completeness at the splitting agent. The condition

to receive failure messages for all values for which aCPA was generated ensures that backtrack corresponds

exactly to the case where there is no solution in the scanned search space. The sum of the number of tuples

explored in the split search space is equal to the number of tuples in the original search space and therefore

the algorithm termination is not affected by the split. �

For the completeness ofConcDB one needs to show also that the additional mechanism for terminat-

ing unsolvable search processes on unsolvable sub-search-spaces does not terminate a search-process which

explores a sub-search-space that includes a solution. To do so we continue as follows. In every sub-search-

space, all tuples of assignments share the head (or prefix) of the assignment. Thus for every sub-search-space

we define:

16



Definition 1 A Common Head(CH) is the maximal prefix of assignments which is included in all partial

assignments in a sub-search-space.

Lemma 3 A sub-search-space whoseCH includes an inconsistent subset of assignments does not include a

solution to the DisCSP.

The proof of lemma 3 derives from the method of constructing an inconsistent assignment in dynamic

backtrack [7]. A partial assignment is declared inconsistent only if it causes an empty domain in one of the

variables. This implies that this partial assignment cannot be part of a solution. From definition 1 we derive

that if a CH includes an inconsistent partial assignment it must be included in all the assignments in its

related sub-search-space which means that none of these assignments is a solution to theDisCSP . �

Theorem 5 ConcDB does not terminate search-processes which lead to a solution.

ConcDB terminates a search process by sending forward unsolvable messages (line 19 in function

receiveCPA, line 5 in functionmark unsolvable, line 3 in functioncheckSPs). Only SPs that have aCH

that is an extension of theCH that was found inconsistent are marked unsolvable. The search on theseSPs

is terminated when the agent receives theCPA corresponding to the unsolvableSP (lines 2,3 of function

assignCPA). Lemma 3 implies the proof for Theorem 5. It is immediately clear from Theorem 5 that all

partial assignments that lead to a solution will be extended, which implies the completeness ofConcDB. �

5. Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to compare two independent

measures of performance - time, in the form of steps of computation [11, 20], and communication load, in

the form of the total number of messages sent [11]. Comparing the number of non-concurrent steps of

computation of several search algorithms onDisCSPs, measures the concurrency of the algorithms.

Non-concurrent computation effort, in systems with no message delay, are counted by a method similar

to that of Lamport’s logical clocks [10, 12]. Every agent holds a counter of constraint checks performed.

Every message carries the value of the sending agent’s counter. When an agent receives a message it updates

its counter to the largest value between its own counter and the counter value carried by the message. By

reporting the cost of the search as the largest counter held by some agent at the end of the search, we achieve

a measure of concurrent search effort that is close to Lamport’s logical time [10]. This measure can be

upgraded to count the number of non-concurrent constraint checks performed (NCCCs), thus incorporate

the local computational effort of agents in each step [12].

The measure of non-concurrent number of constraints checks (NCCCs)is implementation independent.

This makes it more representative than run-time, which can only be measured on multi-machine implemen-

tation and is dependent on many implementational details in particular on communication among machines.

The present paper evaluates the proposed algorithm in the presence of message delays. In order to control

message delays, an asynchronous simulator must be used. Controlling the delay of messages is another rea-

son to avoid multi-machine implementation. Again, leading to the implementation independent choice of the

NCCCs measure over run-time.

17



The experimental evaluation includes four sets of experiments. In the first set the effect of concurrent

computation is evaluated by comparing different versions of concurrent search, that have different levels of

concurrency. In the second set of experiments the run ofConcDB is compared to the three best perform-

ing search algorithms, synchronous conflict backjumping (CBJ) [3, 24], asynchronous forward-checking

(AFC) [13] and asynchronous backtracking (ABT ) [20, 1]. The third set of experiments checks the behav-

ior of Concurrent Searchand the other algorithms in real world systems with random message delays. The

last set of experiments investigates the heuristic used to determine the level of concurrency of theConcDB

algorithm. The algorithm is run using variousstepslimit values with and without message delays.

All experiments were conducted using an asynchronous simulator. To simulate asynchronous agents, the

simulator implements agents asJava Threads. Threads (agents) run asynchronously, exchanging messages.

After the algorithm is initiated, agents block on incoming message queues and become active when messages

are received. Experiments were conducted on random networks of constraints. The network of constraints,

in each of the experiments, is generated randomly by selecting the probabilityp1 of a constraint among any

pair of variables and the probabilityp2, for the occurrence of a violation among two assignments of values

to a constrained pair of variables [15, 18]. All four sets of experiments, were conducted on networks with 15

agents (n = 15) and 10 values for each agent’s variable (k = 10). The only exception are the experiments

in Section 5.2 which compare the run of the algorithms on problems of different sizes, where problem sizes

reachn = 20. For each pair of density and tightness values (p1, p2) 50 different random problems were

solved by each algorithm and the results presented are the average of these 50 runs.

5.1 Evaluation of concurrency within ConcBT

To investigate the effect of concurrency, one needs to compare the performance ofConcurrent Searchwith

and without splitting and dynamic splitting. To this end, the simplest concurrent search algorithm,ConcBT ,

was run in a 1-CPA version, 5-CPA version and a version which performs dynamic re-splitting (using a

steplimit of 35). TheConcBT algorithm is used in this set instead ofConcDB to eliminate the effect of

Dynamic Backtrackingon the results. The 1-CPAversion is completely sequential and serves as the baseline

for comparison to the concurrent versions.

In the first set of experiments the density of the constraint networks is (p1 = 0.7). The value of tightness,

p2 was varied between 0.1 and 0.9, to cover all range of problem difficulty. Results show averages over 50

runs.

Figure 8 shows the computational effort, the number of non-concurrent constraint checks, for all three

versions. It is easy to see that concurrency improves the search efficiency and that dynamic re-splitting

improves it further. For the harder problem instances the improvement is by a factor of 6 over the 1-CPA

version and a factor of 3 over the 5-CPA version. Figure 9 shows the results in total number of messages

sent. Clearly, the concurrent versions, either the 5-CPA version or the re-split one, circulate moreCPAs in

the network. However, the interesting result is that even thoughConcBT with dynamic splitting increases

the number of traversingCPAs during search, the effect on the total number of messages is negligible. The

dynamic splittingConcBT does send more messages concurrently but does so during a shorter period of

time, resulting in a low amount of total communication.

18



Figure 8: Number of non-concurrent constraint checks in different versions of ConcBT.

Figure 9: Total number of messages sent in different versions of ConcBT.

5.2 Comparing to other DisCSP algorithms

In order to evaluate the performance of concurrent dynamic backtracking (ConcDB) it is compared to rep-

resentatives of the two families of algorithms in the literature. For sequential assignment (synchronous)

DisCSP algorithmsConflict-based Backjumpingis selected [24, 3].CBJ is an improved version of syn-

chronous backtracking [20], in which agents processconflict setsin order to backtrack directly to the culprit

agent.

Asynchronous Forward-checking (AFC) [13] is an algorithm which performs sequential assignments

like CBJ . A special message which carries the current partial assignment (CPA) is passed among agents

and serves as a token to synchronize agent’s assignments. An agent which successfully assigned its vari-

19



Figure 10: Number of non-concurrent constraint checks performed by ConcDB, ABT and CBJ on low den-

sity DisCSPs.

able and added its assignment to theCPA, beside sending theCPA forward for the next agent to assign it,

sends copies of theCPA to all unassigned agents which perform forward checking concurrently and asyn-

chronously. As a result, the agents detect early a need to backtrack. Agents initiate a backtrack procedure by

sendingNot OK messages to all agents which may hold theCPA. An agent that receives aNot OK message

and then the inconsistentCPA, backtracks as inCBJ by sending theCPA back to the culprit agent.

Asynchronous Backtracking (ABT ) [20, 1] is the best performing asynchronous backtracking algorithm.

In ABT agents assign their variables asynchronously, and send their assignments inok? messages to other

agents to check against constraints. A fixed priority order among agents is used to break conflicts. Agents

inform higher priority agents of their inconsistent assignment by sending them the inconsistent partial as-

signment in aNogood message. In the present implementation ofABT , Nogoods are resolved and stored

according to the method presented in [1]. Based on Yokoo’s suggestions [20], agents read in every step, all

messages received before performing computation. This forms the best performing version ofABT .

In [20], Yokoo reports that the Asynchronous Weak Commitment algorithm (AWC) is faster thanABT .

However, in order to be completeAWC requires agents to hold exponential space (forNogoods). This

makesAWC unfeasible for hard instances of largeDisCSPs. According to Yokoo, this problem can be

solved by limiting the size of theNogood storage, making. a non-complete algorithm.

Figure 10 presents the number of non-concurrent constraint checks performed byConcDB, CBJ , AFC

andABT on problems with low constraint density (p1 = 0.4). For the harder problem instances,ConcDB

outperformsAFC by a factor of 1.5,ABT by a factor of 2.5 and CBJ by a factor of 3. Figure 11 presents

the total number of messages sent by the algorithms in the same run. When it comes to network load the

advantage ofConcDB overABT andAFC is larger (a factor of 4). As expected, the total network load of

20



Figure 11: Total number of messages sent by ConcDB, ABT and CBJ on low density DisCSPs

Figure 12: Number of non-concurrent constraint checks performed by ConcDB and ABT on high density

DisCSPs.

the synchronous algorithm, which maintains a single message throughout the search, is the smallest. Still,

the total number of messages sent byCBJ andConcDB are very close.

Figures 12 and 13 show similar results onDisCSPs with higher density (p1 = 0.7). The advantage of

ConcDB over ABT and CBJ in NCCCs is more pronounced on higher densityDisCSPs. On the

hardest instances,ConcDB performs 6 times less non concurrent constraint checks thanABT and 4 times

less thanCBJ . AFC also performs better on denseDisCSPs. On the hardest instances it performs slightly

better thanConcDB. The total number of messages sent byConcDB andCBJ are very close. However,

AFC sends 4 times more messages andABT sends 6 times more messages than bothCBJ andConcDB.

21



Figure 13: Total number of messages sent by ConcDB, ABT, CBJ and AFC on high density DisCSPs

Figure 14: Number ofNCCCs performed by ConcDB, ABT CBJ and AFC on the hardest instances of

DisCSPs with increasing sizes (p1 = 0.4)

22



Figure 15: Number ofNCCCs performed by ConcDB, ABT CBJ and AFC on the hardest instances of

DisCSPs with increasing sizes (p1 = 0.7)

Figures 14 and 15 present the number of non concurrent constraint checks performed by the different

algorithms on problems with increasing sizes (number of agents). For every size, the result of the most

hardest instancesDisCSPs are presented. Clearly the performance ofABT andCBJ deteriorates faster

than that ofAFC andConcDB when the number of agents increments.

5.3 Performance in the presence of message delays

An important part of the experimental evaluation is to measure the impact of imperfect communication on the

performance of distributed search onDisCSPs. Message delay has the potential of changing the behavior of

distributed search algorithms [5]. For the simplest possible algorithm, synchronous backtracking (SBT ) [20],

the effect of message delay is very clear. The number of computation steps is not affected by message delay

and the delay in every step of computation is the delay on the message that triggered it. Therefore, the

total time of the algorithm run can be calculated as the total computation time, plus the total delay time of

messages. This is true also for versions of synchronous backtracking that perform backjumping [24, 3].

In the presence of concurrent computation, the time of message delays must be added to the total algo-

rithm time only if no computation was performed concurrently. To achieve this goal a simulator is used,

which counts message delays in terms of computation steps and adds them to the accumulated run-time when

no computation is performed concurrently [27].

The asynchronous simulation of message delays is essential for controlling the experimental evalua-

tions. The evaluated algorithms must be run in a controllable environment that can correctly measure

non-concurrent computational effort. In that respect the evaluation of differentDisCSP algorithms un-

der mesaage delay performed inNCCCs are truly implementation independent and concurrent. This is in

strong contrast to run-time measures on multimachines, that depend strongly on the system.

23



Figure 16: Number ofNCCCs performed by ConcDB, ABT, CBJ and AFC on low densityDisCSPswith

random message delay(p1 = 0.4)

In order to simulate message delays, all messages are delivered by a dedicatedMailer thread. The

mailer holds a counter of non-concurrent constraint checks performed by agents in the system. This counter

represents the logical time of the system [10] and is called theLogical Time Counter(LTC). Every message

delivered by the mailer to an agent, carries theLTC value of its delivery to the receiving agent. An agent

that receives a message updates its counter to the maximum value between the receivedLTC and its own

value. Next, it performs the computation step, and sends its outgoing messages with the value of its counter,

incremented by the number ofCCs performed during the step.

The mailer simulates message delays in terms of non-concurrent constraint checks. When the mailer

receives a message, it first checks if theLTC value that is carried by the message is larger than its own value.

If so, it increments the value of theLTC. Then a delay for the message (in number ofNCCCs) is selected.

Each message is assigned adelivery time which is the sum of the current value of theLTC and the selected

delay (inCCs), and placed in theoutgoing queue. TheMailer delivers messages, withdelivery time

less or equal to the mailer’s currentLTC value, to their destination agents.

When there are no incoming messages, and all agents are idle, if theoutgoing queue is not empty

(otherwise the system is idle and a solution has been found) the mailer increases the value of theLTC to the

value of thedelivery time of the first message in the outgoing queue and delivers the first message.

The non-concurrent run time reported by the algorithm, is the largestLTC value that is held by some

agent at the end of the algorithm run. By incrementing theLTC only when messages carryLTCs with values

larger than the mailer’sLTC value, constraint checks that were performed concurrently are not counted twice.

The actual computational cost during any step is in principle different for differentDisCSP algorithms.

Measuring non-concurrent constraint checks also enables to evaluate algorithms in which agents perform

computation which is not triggered or followed by a message.

24



Figure 17: Number ofNCCCs performed by ConcDB, ABT, CBJ and AFC on low densityDisCSPswith

random message delay(p1 = 0.7)

Figures 16 and 17 present the results of the third set of experiments in which the four algorithms were

run on systems with random message delays. Each message was delayed between 10 to 50 non concurrent

constraint checks and the results are presented for low and high density constraint networks. As expected,

CBJ is affected most when messages are delayed. In a sequential assignments (synchronous) algorithm there

is no concurrent computation by agents. Therefore, each message delay is added to the final run-time result.

Message delays have also a strong effect onAFC since, although it performs concurrent computation, its

assignments are performed sequentially. The performance of asynchronous backtracking also deteriorates in

the presence of random message delays, while the effect on concurrent search is minor. The advantage of

concurrent search over both synchronous and asynchronous backtracking in the presence of message delay is

connected to the properties of these algorithms. Previous studies report thatABT performs best when it reads

multiple messages before performing computation [24, 1]. When messages are randomly delayed, agents in

ABT are more likely to perform computation triggered by a single message. This explains the deterioration

in performance ofABT in the presence of random message delays.

To understand the robustness ofConcurrent Searchto message delay imagine the following example.

Consider the case whereConcDB splits the search space multiple times and the number ofCPAs is larger

than the number of agents. In systems with no message delays this would mean that some of theCPAs are

waiting in incoming queues, to be processed by the agents. This delays the search on the sub-search-spaces

they represent. In systems with message delays, this potential waiting is caused by the system. By choosing

the rightsteps limit, agents can be kept busy at all times, performing computation against consistent partial

assignments.

To further investigate the different behavior of the four algorithms in the presence of imperfect commu-

nication, it is interesting to examine the algorithms reaction to message delays of different sizes.

25



Figure 18: Number of non-concurrent constraint checks performed by ABT, AFC and ConcDB on systems

with increasing message delays

The effect on synchronousCBJ is linear (as expected) and its slope is as steep as the size of the de-

lay. This makes it impossible to display synchronous search together withABT , AFC and ConcDB.

Figure 18 presents the impact, in number of non-concurrent constraint checks, of different sizes of random

message delays, on Asynchronous Backtracking, Asynchronous Forward-checking and on Concurrent Dy-

namic Backtracking. As expected,AFC is affected most when the average size of delays increases. The

difference in robustness betweenABT andConcDB is striking. WhileABT performs a linearly growing

number ofNCCCs, ConcDB remains relatively constant. Over a range of average random delay of 200

CCs,ABT ′s performance deteriorates by a factor of 4.5, while forConcDB the increase is very slow and

the overall factor is about 1.5.

5.4 The impact of thestepslimit

The level of concurrency of theConcDB algorithm is determined by the heuristic upon which the agents

decide when to send a split message. Using the heuristic suggested in Section 3, the concurrency of the

algorithm can be controlled by selecting a good value to thestepslimit. Figures 19 and 20 present the number

of non concurrent constraint checks performed byConcDB using variousstepslimits. The algorithm was

tested with and without message delay. It is clear from the above figures that the choice of a largestepslimit

deteriorates the performance ofConcDB when run on systems with message delays. The effect onConcDB

running with optimal communication is quite small. These results are not surprising considering the results

for CBJ andConcDB presented in Section 5.2. When the value of thestepslimit increases, the level of

concurrency decreases and the behavior of the algorithm is closer to the behavior of a single sequential search

procedure -CBJ . As for CBJ , it performs well when there are no message delays but performs poorly in

the presence of message delay. Figures 21 and 22 present the performance of the algorithm for smaller

stepslimits. The stronger effect of the growingstepslimit in the presence of message delay is clear in these

26



Figure 19: Number of non-concurrent constraint checks performed by ConcDB for increasingsteps limits

(p1 = 0.4)

Figure 20: Number of non-concurrent constraint checks performed by ConcDB for increasingsteps limits

(p1 = 0.7)

figures. An interesting observation is that with no message delays, the highest level of concurrency does not

produce the best performance.

6. Conclusions

Search algorithms onDisCSPs can be categorized into two families. Single search process algorithms

(SPAs) and multiple (concurrent) search process algorithms (MPAs). MPAs are also calledconcurrent search

algorithms (CSAs). The state of single process algorithms is defined by asingle tuple of assignments, one for

27



Figure 21: Number of non-concurrent constraint checks performed by ConcDB for a smaller range of

steps limits (p1 = 0.4)

Figure 22: Number of non-concurrent constraint checks performed by ConcDB for a smaller range of

steps limits (p1 = 0.7)

each agent. When this set of assignments is complete (containing assignments to all variables of all agents)

and consistent, the SPA stops and reports a solution. Single search process algorithms can be asynchronous,

like ABT [20, 1] or synchronous (SBT [20], CBJ [24, 3]). In concurrent search, multiple concurrent

processes search non intersecting parts of the global search space of aDisCSP ([23, 8, 17]). All agents in

aMPA participate in every search process, since each agent holds some variables of the search space. As a

result, concurrent search is an asynchronous distributed process.

28



The Concurrent Dynamic Backtracking search algorithm (ConcDB) provides an efficient method for

several search processes to search concurrently for a solution to aDisCSP . The independent random or-

dering of search on multiple search processes generates an efficient randomization that improves the overall

performance. Through a mechanism of dynamic splitting, the number of search processes can be enhanced in

some sub-search spaces, thus achieving load balancing in a natural way. The addition of Dynamic Backtrack-

ing to concurrent search, enables early termination of search processes on sub-spaces which do not lead to a

solution. An inconsistent subset can be found in one sub-space that rules out other sub-spaces as unsolvable.

Dynamic backtracking was found to account for∼ 10% of search processes termination in the experiments

of section 5.2

The experimental behavior ofConcDB on randomDisCSPs clearly indicates its efficiency, compared

to algorithms of a single search process likeCBJ , AFC andABT . This advantage is more pronounced on

realistic systems with random message delays where the performance of single process algorithms deterio-

rates whileConcDB is robust.

References

[1] C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking without adding links: a

new member in the abt family.Artificial Intelligence, 161:1-2:7–24, January 2005.

[2] C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking. InProc. Workshop on

Distributed Constraint of IJCAI01, 2001.

[3] I. Brito and P. Meseguer. Synchronous,asnchronous and hybrid algorithms for discsp. InWorkshop on

Distributed Constraints Reasoning(DCR-04) CP-2004, Toronto, September 2004.

[4] Rina Dechter.Constraints Processing. Morgan Kaufman, 2003.

[5] C. Fernandez, R. Bejar, B. Krishnamachari, and K. Gomes. Communication and computation in dis-

tributed csp algorithms. InProc. CP2002, pages 664–679, Ithaca, NY, USA, July 2002.

[6] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby Walsh. An empirical study of

dynamic variable ordering heuristics for the constraint satisfaction problem. InPrinciples and Practice

of Constraint Programming, pages 179–193, 1996.

[7] M. L. Ginsberg. Dynamic backtracking.J. of Artificial Intelligence Research, 1:25–46, 1993.

[8] Y. Hamadi. Interleaved backtracking in distributed constraint networks.Intern. Jou. AI Tools, 11:167–

188, 2002.

[9] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algorithms.Artificial

Intelligence, 21:365–387, 1997.

[10] L. Lamport. Time, clocks, and the ordering of events in distributed system.Communication of the ACM,

2:95–114, April 1978.

29



[11] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.

[12] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed constraints

processing algorithms. InProc. AAMAS-2002 Workshop on Distributed Constraint Reasoning DCR,

pages 86–93, Bologna, July 2002.

[13] A. Meisels and R. Zivan. Asynchronous forward-checking for distributed csps. In W. Zhang, editor,

Frontiers in Artificial Intelligence and Applications. IOS Press, 2003.

[14] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computational Intelligence,

9:268–299, 1993.

[15] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction problems.Artificial

Intelligence, 81:81–109, 1996.

[16] M. C. Silaghi.Asynchronously Solving Problems with Privacy Requirements. PhD thesis, Swiss Federal

Institute of Technology (EPFL), 2002.

[17] M. C. Silaghi and B. Faltings. Parallel proposals in asynchronous search. Technical Report 01/#371,

EPFL, August 2001. http://liawww.epfl.ch/cgi-bin/Pubs/recherche.

[18] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.Artificial Intelli-

gence, 81:155 – 181, 1996.

[19] G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint satisfaction

problems (dcsps). InConstraint Processing-96, (short paper), pages 561–2, Cambridge, Massachusetts,

USA, October 1996.

[20] M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review.Autonomous Agents

& Multi-Agent Sys., 3:198–212, 2000.

[21] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction problem:

Formalization and algorithms.IEEE Trans. on Data and Kn. Eng., 10:673–685, 1998.

[22] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed constraint sat-

isfaction for formalizing distributed problem solving. InIEEE Intern. Conf. Distrb. Comp. Sys., pages

614 – 621, 1992.

[23] R. Zivan and A. Meisels. Parallel backtrack search on discsps. InProc. AAMAS-2002 Workshop on

Distributed Constraint Reasoning DCR, Bologna, July 2002.

[24] R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. InProc. 1st European

Workshop on Multi Agent System, EUMAS, Oxford, December 2003.

[25] R. Zivan and A. Meisels. Concurrent backtrack search for discsps. InProc. FLAIRS-04, pages 776–81,

Miami Florida, May 2004.

30



[26] R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csps. InCP-2004, pages

782–7, Toronto, 2004.

[27] R. Zivan and A. Meisels. Message delay and discsp search algorithms. InProc. 5th workshop on

distributed constraints reasoning, DCR-04, Toronto, 2004.

31


