Constraints (2006) 11: 179-197
DOI 10.1007/s10601-006-8062-0

Dynamic Ordering for Asynchronous Backtracking
on DisCSPs

Roie Zivan - Amnon Meisels

© Springer Science + Business Media, LLC 2006

Abstract An algorithm that performs asynchronous backtracking on distributed CSPs,
with dynamic ordering of agents is proposed, ABT_DO. Agents propose reorderings of
lower priority agents and send these proposals whenever they send assignment
messages. Changes of ordering triggers a different computation of Nogoods. The
dynamic ordered asynchronous backtracking algorithm uses polynomial space,
similarly to standard ABT. The ABT_DO algorithm with three different ordering
heuristics is compared to standard ABT on randomly generated DisCSPs. A Nogood-
triggered heuristic, inspired by dynamic backtracking, is found to outperform static
order ABT by a large factor in run-time and improve the network load.

Keywords Distributed Constraint satisfaction - Distibuted Al - Search

1. Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents,
each holding its local constraint network. Agents are connected by constraints
among variables of different agents. Agents assign values to variables, attempting to
generate a locally consistent assignment that is also consistent with all constraints
between agents (cf. [23, 25]). To achieve this goal, agents check the value assign-
ments to their variables for local consistency and exchange messages with other
agents, to check consistency of their proposed assignments against constraints with
variables owned by different agents [2].

Distributed CSPs are an elegant model for many every day combinatorial prob-
lems that are distributed by nature. Take for example a large hospital that is com-
posed of many wards. Each ward constructs a weekly timetable assigning its nurses to
shifts. The construction of a weekly timetable involves solving a constraint satis-
faction problem for each ward. Some of the nurses in every ward are qualified to work

R. Zivan - A. Meisels (P<)

Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, 84-105, Israel

e-mail: am@cs.bgu.ac.il

R. Zivan
e-mail: zivanr@cs.bgu.ac.il

@ Springer

180 Constraints (2006) 11: 179-197

in the Emergency Room. Hospital regulations require a certain number of qualified
nurses (e.g., for Emergency Room) in each shift. This imposes constraints among the
timetables of different wards and generates a complex Distributed CSP [23].

A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves the assignments to all variables of all agents
and exchange of information among all agents, to check the consistency of assign-
ments with constraints among agents.

Asynchronous Backtracking (ABT) is one of the most efficient and robust algo-
rithms for solving distributed constraints satisfaction problems. Asynchronous
Backtracking was first presented by Yokoo [25, 26] and was developed further and
studied in [2, 3, 10, 20]. Agents in the ABT algorithm perform assignments asynchro-
nously according to their current view of the system’s state. The method performed by
each agent is in general simple. Later versions of ABT specify the use of polynomial
space memory in order to perform backjumping using the resolving of stored
explanations, similarly to dynamic backtracking [2, 3]. The versions of asynchronous
backtracking presented in all of the above studies use a static priority order among
all agents.

In centralized CSPs, dynamic variable ordering is known to be an effective
heuristic for gaining efficiency [6]. Recent studies have shown that the same is true
for algorithms which perform sequential (synchronous) assignments in Distributed
CSPs [5, 17]. These studies suggest heuristics of agent/variable ordering and empir-
ically show large gains in efficiency over the same algorithms using static order.
Thus we have a strong motivation for exploring the possibilities for dynamic re-
ordering of asynchronous backtracking.

In [11] the authors present a distributed ordering algorithm, according to the
properties of the constraints graph. Once the order is determined, the asynchronous
backtracking algorithm uses this fixed order.

An asynchronous algorithm with dynamic ordering was proposed by [24], Asyn-
chronous Weak Commitment (AWC). According to [25], AWC outperforms ABT.
However, in order to be complete, AWC uses exponential space for storing Nogoods
which makes it impractical for solving hard instances of even small DisCSPs.

An attempt to combine ABT with AWC was reported by [21]. In order to
perform asynchronous finite reordering operations [21] suggest that the reordering
operation will be performed by abstract agents. The results presented in [21] show
minor improvements to static order ABT.

The present paper proposes a simple algorithm for dynamic ordering in
asynchronous backtracking, ABT_DO. The proposed algorithm uses polynomial
space, as standard ABT. In the proposed ABT_DO algorithm the agents of the
DisCSP choose orders dynamically and asynchronously. Agents in ABT_DO perform
according to the current, most updated order they hold. Each agent can change the
order of all agents with lower priority. An agent can propose an order change each
time it replaces its assignment. Each order is time-stamped according to agents
assignment. The method of time-stamping for defining the most updated order is the
same that was used in [17] for choosing the most updated partial assignment. A simple
array of counters represents the priority of a proposed order, according to the global
search tree.

Having established a correct algorithm for dynamic variable ordering in ABT, one
needs to investigate ordering heuristics. Surprisingly, some of the heuristics which

@ Springer

Constraints (2006) 11: 179-197 181

are very effective for distributed algorithms using a sequential assignment protocol,
do not improve the run-time of ABT. It turns out that an ordering heuristic, based
on Dynamic Backtracking [9], is very successful on random DisCSPs (see Section 7).

Distributed CSPs are presented in Section 2. A description of the standard ABT
algorithm is presented in Section 3. Section 4 presents a short reminder of variable
ordering in standard CSPs. Asynchronous backtracking with dynamic ordering
(ABT_DO) is presented in Section 5. Section 6 introduces a correctness and com-
pleteness proof for ABT_DO. An extensive experimental evaluation, which compares
ABT to ABT_DO with several ordering heuristics is in Section 7. The experiments
were conducted on randomly generated DisCSPs.

2. Distributed Constraint Satisfaction

A distributed constraint satisfaction problem—DisCSP is composed of a set of k
agents Aq,A,...,Ar. Each agent A; contains a set of constrained variables Xj,
Xi,,...,X;, . Constraints or relations R are subsets of the Cartesian product of the
domains of the constrained variables. For a set of constrained variables
Xiys Xjs ...y X, » with domains of values for each variable D;,, D, ...,D,,,, the con-
straint is defined as R C D;, x Dj, x ... x D, . A binary constraint R; between any
two variables X; and X; is a subset of the Cartesian product of their domains;
R;j € Dj x D;. In a distributed constraint satisfaction problem DisCSP, the agents
variables are constrained with variables that belong to different agents [23, 26]. In
addition, each agent has a set of constrained variables, i.e., a local constraint
network.

An assignment (or a label) is a pair , where var is a variable of some agent and val
is a value from var’s domain that is assigned to it. A compound label is a set of
assignments of values to a set of variables. A solution P to a DisCSP is a compound
label that includes all variables of all agents, that satisfies all the constraints. Agents
check assignments of values against non-local constraints by communicating with
other agents through sending and receiving messages. Agents exchange messages
with agents whose assignments might be in conflict [2]. Agents connected by con-
straints are therefore called neighbors. The ordering of agents is termed priority, so
that agents that are later in the order are termed “lower priority agents” [2, 25].

The following assumptions are routinely made in studies of DisCSPs and are
assumed to hold in the present study [2, 25].

1. All agents hold exactly one variable.

2. The amount of time that passes between the sending and the receiving of a
message is finite.

3. Messages sent by agent A; to agent A; are received by A; in the order they were
sent.

3. Asynchronous Backtracking (ABT)

The Asynchronous Backtracking algorithm, was presented in several versions over
the last decade and is described here in the form of the more recent papers [2, 25].
In the ABT algorithm, agents hold an assignment for their variables at all times,
which is consistent with their view of the state of the system (i.e., the assignments of

@ Springer

182 Constraints (2006) 11: 179-197

their neighboring agents). When the agent cannot find an assignment which is
consistent with the assignments of higher priorities neighboring agents, it changes its
view by sending a Nogood to an agent with a conflicting assignment and eliminating
this conflicting assignment from its current view. Then it makes another attempt to
assign its variable [2, 25].

The code of the Asynchronous Backtracking algorithm (ABT) is presented in
Fig. 1. ABT has a total order of priorities among agents. Agents hold a data
structure called Agent_view which contains the most recent assignments received
from agents with higher priority. The algorithm starts by each agent assigning its
variable, and sending the assignment to neighboring agents with lower priority.
When an agent receives a message containing an assignment (an ok? message [25]),
it updates its Agent_view with the received assignment and removes inconsistent

when received (ok?, (z;,d;))

1. add (z;,d;) to agent_view;

2. remove non consistent N ogoods;
3. check_agent_view;

when received (nogood, z ;, nogood)
old_value «— current_value;
if(nogood is consistent with agent view U current walue)
store nogood;
when (nogood contains an agent x, that is not a neighbor)
request x, to add x; as a neighbor,
add (zy, di) to agent view,
check_agent_view;
when (old_value = current_value)
send (ok?, (z;, current_value)) to z; ;

WXL~

procedure check _agent_view
1. when (agent_view and current_value are not consistent)
2 if (no value in D; is consistent with agent_view)

3 backtrack;

4. else

5 select d € D, where agent_view and d are consistent;
6 current_value «— d,

7 send (ok?,(x;, d)) to low_priority_neighbors;

procedure backtrack

1. nogood < resolve inconsistent_subset;

2. if (nogood is empty)

3 broadcast to other agents that there is no solution;

4 stop;

5. select (z;,d;) where x; has the lowest priority in nogood;
6. send (nogood, z;, nogood) to x;;

7. remove (z;,d;) from agent_view;

8. remove all Nogoods containing (x, d;);

9. check_agent_view;

Fig. 1 Standard ABT algorithm

@ Springer

Constraints (2006) 11: 179-197 183

Nogoods. Then by calling procedure check_agent view, it checks whether its
assignment is still consistent or it needs to be replaced (first procedure in Fig. 1).

Agents that reassign their variable, inform their lower priority neighbors by
sending them ok? messages (procedure check_ agent_view, lines 5-7). Agents that
cannot find a consistent assignment, send the inconsistent tuple in their Agent_view
in a backtrack message (a Nogood message [25]) and remove from their Agent_view
the assignment of the lowest priority agent in the inconsistent tuple (procedure
backtrack). In the simplest form of the ABT algorithm, the complete Agent_view is
sent as a Nogood [25]. The Nogood is sent to the lowest priority agent whose
assignment is included in the Nogood. After the culprit assignment is removed from
the AgentView the agent makes another attempt to assign its variable by calling
procedure check_agent_view (procedure backtrack lines 5-9).

Agents that receive a Nogood, check its relevance against the content of their
Agent view [2]. If the Nogood is relevant the agent stores it, and tries to find a
consistent assignment. If the agent receiving the Nogood keeps its assignment, it
informs the Nogood sender by re-sending it an ok? message with its assignment. An
agent A; which receives a Nogood containing an assignment of agent A; which is not
included in its Agent_view, adds the assignment of A; to its Agent_view and sends a
message to A; asking it to add a link between them, i.e., inform A; about all assignment
changes it performs in the future (lines 2-4 in the second procedure of Fig. 1).

The performance of ABT can be greatly improved by requiring agents to read all
messages they receive before performing computation [2, 25]. This technique was
found to improve the performance of Asynchronous Backtracking on the harder
instances of randomly generated Distributed CSPs by a large factor [5, 27].

Another improvement to the performance of ABT can be achieved by using the
method for resolving inconsistent subsets of the Agent_view, based on methods of
dynamic backtrack. A version of ABT that uses this method was presented in [2] and
was shown to use polynomial space for storing Nogoods (explanations). In all the
experiments in this paper, a version of ABT which includes both of the above
improvements is used. Agents read all incoming messages that were received before
performing computation and No goods are resolved, using the dynamic back-
tracking method.

4. Dynamic Ordering in centralized algorithms

Dynamic variable ordering was found to be a powerful tool for gaining efficiency in
CSP algorithms. Many studies in the last two decades acknowledged this fact and
searched for the best ordering heuristic [1, 4, 7, 8, 12]. In all of these studies,
dynamic variable ordering is performed by using a heuristic in order to choose the
next variable to be assigned. A simple observation on the way the dynamic ordering
algorithm traverses the search tree is that the order of the variables in the current
partial assignment of the algorithm was chosen one by one, each time the algorithm
performed a successful assignment and decides on the next variable [1, 4, 7, 8, 12].
When the algorithm backtracks, it must do so according to the order of the current
partial assignment. In a naive algorithm this would mean to backtrack to the last
variable assigned. In the case of a conflict based backjumping algorithm [18], the
algorithm backtracks to the last variable assigned in the conflicting set of variables,

@ Springer

184 Constraints (2006) 11: 179-197

according to the order the partial assignment was obtained [1, 4, 7, 8, 12]. Two
simple rules can be derived from this observation:

1. Whenever the search algorithm moves forward, choose the next variable
according to the desired heuristic.
2. Backtrack according to the order in which variables were assigned.

Distributed sequential assignments algorithms [5, 17] implement the same rules
while performing dynamic agent ordering.

Although the above observation and rules are straightforward in centralized and
sequential assignments algorithms they can form the basic idea that enables
asynchronous backtracking to perform dynamic agent ordering. The proposed
method of distributed asynchronous dynamic reordering that is described in the next
section forces the agents to apply the above rules asynchronously.

5. ABT with Dynamic Ordering

Each agent in ABT_DO holds a Current_order which is an ordered list of pairs.
Every pair includes the ID of one of the agents and a counter. Each agent can
propose a new order for agents that have lower priority, each time it replaces its
assignment. This makes the sending of an ordering proposal message always
coincide with an ok? message. An agent A; can propose an order according to the
following rules:

1. Agents with higher priority than A; and A; itself, do not change priorities in the
new order.

2. Agents with lower priority than A;, in the current order, can change their
priorities in the new order but not to a higher priority thanA;itself (This rule
enables a more flexible order than in the centralized case).

The counters attached to each agent ID in the order list form a time-stamp.
Initially, all time-stamp counters are set to zero and all agents start with the same
Current_Order. Each agent A; that proposes a new order, changes the order of the
pairs in its own ordered list and updates the counters as follows:

1. The counters of agents with higher priority than A;, according to the
Current_order, are not changed.

2. The counter of A; is incremented by one.

3. The counters of agents with lower priority than A; in the Current_order are set
to zero.

Consider an example in which agent A, holds the following Current_order:
(1,4)(2,3)(3,1)(4,0)(5,1). There are five agents Aj...As and they are ordered
according to their IDs from left to right. After replacing its assignment it changes
the order to: (1,4)(2,4)(4,0)(5,0)(3,0). In the new order, agent A; which had higher
priority than A, in the previous order keeps its place and the value of its counter
does not change. A, also keeps its place and the value of its counter is incremented
by one. The rest of the agents, which have lower priority than A, in the previous
order, change places and are still located lower than A,. The new order for these
agents is A4, As, A3 and their counters are set to zero.

@ Springer

Constraints (2006) 11: 179-197 185

In ABT, agents send ok? messages to their neighbors whenever they perform an
assignment. In ABT_DO, an agent can choose to change its Current_order after
changing its assignment. If that is the case, besides sending ok? messages an agent
sends order messages to all lower priority agents. The order message includes the
agent’s new Current_order.

For simplicity of presentation we assume that agents send order messages to all
lower priority agents. In the more realistic form of the algorithm, agents send order
messages only to their lower priority neighbors. Both versions are proven correct in
Section 6.

An agent which receives an order message must determine if the received order is
more updated than its own Current_order. It decides by comparing the time-stamps
lexicographically. Since orders are changed according to the above rules, every two
orders must have a common prefix of the agents IDs since the agent that performs
the change does not change its own position and the positions of higher priority
agents. In the above example the common prefix includes agents A; and A,. Since
the agent proposing the new order increases its own counter, when two different
orders are compared, at least one of the time-stamp counters in the common prefix
is different between the two orders. The more up-to-date order is the one for which
the first different counter in the common prefix is larger. In the example above, any
agent which will receive the new order will know it is more up-to-date than the
previous order since the first pair is identical, but the counter of the second pair is
larger.

When an agent A; receives an order which is more up to date than its
Current_order, it replaces its Current_order by the received order. The new order
might change the location of the receiving agent with respect to other agents (in the
new Current_order). In other words, one of the agents that had higher priority than
A; according to the old order, now has a lower priority than A; or vice versa.
Therefore, A; rechecks the consistency of its current assignment and the validity of
its stored Nogoods according to the new order. If the current assignment is
inconsistent according to the new order, the agent makes a new attempt to assign its
variable. In ABT_DO agents send ok? messages to all constraining agents (i.e., their
neighbors in the constraints graph). Although agents might hold in their Agent_views
assignments of agents with lower priorities, according to their Current_order, they
eliminate values from their domain only if they violate constraints with higher
priority agents.

A Nogood message is always checked according to the Current_order of the
receiving agent. If the receiving agent is not the lowest priority agent in the Nogood
according to its Current_order, it sends the Nogood to the lowest priority agent and
sends an ok? message to the sender of the Nogood. This is a similar operation to
that performed in standard ABT for any unaccepted (inconsistent) Nogood.

Figures 2 and 3 present the code of asynchronous backtracking with dynamic
ordering (ABT_DO).

When an ok? message is received (first procedure in Fig. 2), the agent updates the
Agent_view and removes inconsistent Nogoods. Then it calls check_agent_view to
make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more up to date
than the Current_order (second procedure of Fig. 2). If so, the received order is
stored and check_agent_view is called to make sure the current assignment is
consistent with the higher priority assignments in the Agent_view.

@ Springer

186 Constraints (2006) 11: 179-197

when received (ok?, (z,d;):

1. add (z;,d;) to agent_view,
2. remove inconsistent nogoods;
3. check_agent_view;

when received (order, received_order):

1. if (received_order is more updated than Current _order)
2. Current_order «— received_order;

3. remove inconsistent nogoods;

4. check_agent_view;

when received (nogood, z ;, nogood)

1. if (nogood contains an agent x, with lower priority than x;)
2. send (nogood, (;, nogood)) to xy;

3. send (ok?, (z;, current_value) to x;;

4. else

S. if (nogood consistent with { Agent view U current_assignment})
6. store nogood,

7. if (nogood contains an agent xj, that is not its neighbor)
8. request xx to add x; as a neighbor;

9. add (x, di,) to agent_view;

10. check_agent_view;

11. else

12. send (ok?, (z;, current_value)) to x;;

Fig. 2 The ABT_DO algorithm (first part)

When a Nogood is received (third procedure in Fig. 2) the agent first checks if it
is the lowest priority agent in the received Nogood, according to the Current_order.
If not, it sends the Nogood to the lowest priority agent and an ok? message to the
Nogood sender (lines 1-3). If the receiving agent is the lowest priority agent it
performs the same operations as in the standard ABT algorithm (lines 4-12).

Procedure backtrack (Fig. 3) is the same as in standard ABT. The Nogood is
resolved and the result is sent to the lowest priority agent in the Nogood, according
to the Current_order.

Procedure check_agent_view (Fig. 3) is very similar to the same procedure in
standard ABT but the difference is important (lines 5-9). If the current assignment
is not consistent and must be replaced and a new consistent assignment is found, the
agent chooses a new order, according to the algorithms rules and the heuristic used,
as its Current_order (line 7) and updates the corresponding time-stamp. Next, ok?
messages are sent to all neighboring agents. The new order and its time-stamp
counters are sent to all lower priority agents.

6. Correctness of ABT_DO

In order to prove the correctness of the ABT_DO algorithm we first establish two
facts by proving the following lemmas:

Lemma 1 The highest priority agent in the initial order remains the highest priority
agent in all proposed orders.

@ Springer

Constraints (2006) 11: 179-197 187

procedure check_agent _view
1. if(current_assignment is not consistent with all
higher priority assignments in agent view)
if(no value in D; is consistent with all higher priority
assignments in agent _view)
backtrack;
else
select d € D; where agent_view and d are consistent;
current_value «— d;
Current_order «+ choose_new_order
send (ok?,(z;, d)) to neighbors;
send (order,Current_order) to lower priority agents;

»

e e A

procedure backtrack

1. nogood < resolve_inconsistent_subset;

2. if (nogood is empty)

3 broadcast to other agents that there is no solution;

4 stop;

5. select (x;, d;) where x; has the lowest priority in nogood,
6. send (nogood, ;, nogood) to x;;

7. remove (z;,d;) from agent_view;

8. remove all Nogoods containing (x;, d;);

9. check_agent_view;

Fig. 3 The two procedures of the ABT_DO algorithm

The proof for Lemma 1 is immediate from the two rules of reordering. Since no
agent can propose a new order which changes the priority of higher priority agents
and its own priority, no agent including the first can move the highest priority agent
to a lower position.

Lemma 2 When the highest priority agent proposes a new order, it is more up to
date than all previous orders.

This proof is again immediate. In all previous orders the time-stamp counter of
the first agent is smaller than the counter of the time-stamp counter of the first agent
in the new proposed order.

To prove correctness of a search algorithm for DisCSPs one needs to prove that it
is sound, complete and that it terminates. ABT_DO, like ABT, reports a solution
when all agents are idle and no messages are sent. Its soundness follows from the
soundness of ABT (see for example [2]). One point needs mentioning. Since no
messages are traveling in the system in the idle state, all overriding messages have
arrived at their destinations. This means that for every pair of constraining agents an
agreement about their pairwise order has been achieved. One of each pair of
constraining agents checks their constraint and no messages mean no violations, as
in the proof for ABT [2].

Theorem 1 ABT_DO is complete and it terminates.

To prove the completeness and termination of ABT_DO we use induction on the
number of agents (i.e., number of variables) in the DisCSP. For a single agent

@ Springer

188 Constraints (2006) 11: 179-197

DisCSP the order is static therefore the completeness and termination of ABT
implies the same for ABT_DO. Assume ABT_DO is complete and terminates for
every DisCSP with k agents where k < n. Consider a DisCSP with n agents.
According to Lemma 1 the agent with the highest priority in the initial order will not
change its place. The highest priority agent assigns its variable for the first time and
sends it along with its order proposal to other agents. The remaining DisCSP has
n — 1 agents and its initial order is that proposed by the first agent (all other orders
are discarded according to Lemma 2). By the induction assumption the remaining
DisCSP is complete and terminates. If a solution to the induced DisCSP is found,
this means that the lower priority n — 1 agents are idle. So is the first (highest
priority) agent since none of the others sends it any message. If a solution is not
found, by the n — 1 lower priority agents, either an empty Nogood was found by one
of the agents and the whole search is terminated, or a single assignment Nogood will
be sent to the highest priority agent which will cause it to replace its assignment.
The new assignment of the first agent and the new order proposed will induce a new
DisCSP of size n — 1. The search on this new DisCSP of size n — 1 is also complete
and terminates according to the induction assumption. The number of induced
DisCSPs, created by the assignments of the highest priority agent is bound by the
size of its domain. Therefore, the algorithm will terminate in a finite time. The
ABT_DO algorithm is complete since a solution to the DisCSP must include one of
the highest priority agent value assignments, which means that one of the induced
DisCSPs includes a solution iff the original DisCSP includes a solution. This
completes the correctness proof of ABT_DO.

If the network model, or privacy restrictions, enable agents to communicate only
with their neighbors in the constraint network, some small changes are needed in
order to maintain correctness. First, agents must be allowed to change only the
order of lower priority neighbors. This means that the method choose_new_order,
called in line 7 of procedure check agent_view, changes the order by switching
between the position of lower priority neighbors and leaving other lower priority
agents at their current position. Second, whenever an updated order message is
received, an agent informs its neighbors of its new Current_order.

In order to prove that the above two changes do not affect the correctness of the
algorithm we first establish the correctness of Lemmas 1 and 2 under these changes.
Lemma 1 is not affected by the change since the rules for changing agents positions
have become more strict, and still do not allow to change the position of higher
priority agents. Lemma 2 holds because the time-stamp mechanism which promises
its correctness has not changed. These Lemmas are the basis for the correctness of
the induction which proves the algorithm is complete and terminates. However, we
still need to prove the algorithm is sound. One of the assumptions that our
soundness proof depended on was that an idle state of the system would mean that
every constrained pair of agents agrees on the order between them. This claim might
not hold since the most up to date order is not sent to all agents. The following
Lemma proves this claim is still true after the changes in the algorithm:

Lemma 3 When the system reaches an idle state, every pair of constrained agents
hold the same order.

According to the changes described above, whenever one of the constrained
agents receives an updated order message, it informs its neighbors. Therefore, all

@ Springer

Constraints (2006) 11: 179-197 189

900000 -
800000 A
700000 A
600000

—e—ABT

- -&——ABT_DO_domain
500000
400000 4
300000
200000

---m-- ABT_DO_ng

CCs

—-»--ABT_DO_random

100000

D ey

Fig. 4 Non-concurrent constraints checks performed by ABT and ABT_DO using different order
heuristics on low density DisCSPs (p; = 0.4)

agents which have constraints with it will be notified and hold the updated order. If
two agents are not informed with the most updated order, this would mean that both
of them are not lower priority neighbors of the reordering agent and as a result their
current position in the order stays the same. Lemma 3 implies that the algorithm is
sound for versions of ABT_DO that are restricted to send messages only between
pairs of constraining agents.

7. Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance—time, in the form of steps of
computation [14, 25], and communication load, in the form of the total number of
messages sent [14].

Non concurrent steps of computation, are counted by a method similar to the
clock synchronization algorithm of [13]. Every agent holds a counter of computation
steps. Every message carries the value of the sending agent’s counter. When an
agent receives a message it stores the data received together with the corresponding
counter.When the agent first uses the received counter it updates its counter to the
largest value between its own counter and the stored counter value which was
carried by the message [28]. By reporting the cost of the search as the largest counter
held by some agent at the end of the search, a measure of non-concurrent search effort
that is close to Lamports logical time is achieved [13]. If instead of steps of
computation, the number of non-concurrent constraints check is counted (NCCCs),
then the local computational effort of agents in each step is measured [15, 29].

Experiments were conducted on random networks of constraints of n variables, k
values in each domain, a constraints density of p; and tightness p, (which are com-
monly used in experimental evaluations of CSP algorithms [19, 22]). All three sets of
experiments were conducted on networks with 20 agents (n =20) each holding
exactly one variable, 10 values for each variable (k= 10) and two values of
constraints density p; = 0.4 and p; = 0.7. The tightness value p,, is varied between

@ Springer

190 Constraints (2006) 11: 179-197

1400000 -
1200000 A —+—ABT
1000000 — - —ABT_DO_domain
w 500000 A
8 ---m-- ABT_DO_ng
= 500000 A
—-»-—-ABT_DO_random
400000 A
200000
D - T 1 1

Fig. 5 Number of messages sent by ABT and ABT_DO on low density DisCSPs (p; = 0.4)

0.1 and 0.9, to cover all ranges of problem difficulty. For each pair of fixed density
and tightness (p1, p2) 50 different random problems were solved by each algorithm
and the results presented are an average of these 50 runs.

ABT_DO is compared to the run of standard ABT. For ordering variables in
ABT_DO three different heuristics were used.

1. Random: each time an agent changes its assignment it randomly orders all
agents with lower priorities in its Current_order.

2. Domain-size: This heuristic is inspired by the heuristics used for sequential
assigning algorithms in [5]. Domain sizes are calculated based on the fact that
each agent that performs an assignment includes its current domain size in the
sent order message to all other agents. Every agent that replaces an assignment,
orders the lower priority agents according to their domain size from the smallest
to the largest.

3. Nogood-triggered: Agents change the order of the lower priority agents only
when they receive a Nogood which eliminates their current assignment. In this

2500000
2000000 - AT
— - —ABT_DO_domain
1500000
4 ---m--- ABT_DO_ng
Q
1000000 A —-%--ABT_DO_random
500000
0 - T T—h————,

Fig. 6 Non-concurrent constraints checks performed by ABT and ABT_DO using different order
heuristics on high density DisCSPs (p; = 0.7)

@ Springer

Constraints (2006) 11: 179-197 191

6000000
5000000 bt o~ ABT
4000000 - =& —ABT_DO_domain
w
% 3000000 ---m-- ABT_DO_ng
=
—-%--ABT_DO_random
2000000
1000000
0+—=— T . T—————

Fig. 7 Total number of messages sent by ABT and ABT_DO on high density DisCSPs (p; = 0.7)

case the agent moves the sender of the Nogood to be in front of all other lower
priority agents. This heuristic was first used for dynamic backtracking in
centralized CSPs [9].

Figure 4 presents the computational effort in number of non-concurrent
constraints checks to find a solution, performed by ABT and ABT_DO using the
above three heuristics. The algorithms solve low density DisCSPs with density of
p1 = 0.4. ABT_DO with random ordering slightly improves the results of standard
ABT. ABT_DO that uses domain sizes to order the lower priority agents performs
slightly better than the random version. The largest improvement is gained by using
the Nogood-triggered heuristic. For the hardest DisCSP instances, ABT_DO with
the Nogood-triggered heuristic improves the performance of standard ABT by a
factor of 4.

Figure 5 presents the total number of messages sent by the algorithms for the
same problems. While ABT_DO with random ordering heuristic shows a small
improvement in the run time results over standard ABT, it sends more messages.

1200000

1000000 —e—AFC_static

800000 - - == —AFC_ng_triggered
0 . .
3 | - -m-- AFC_min_domain
o 600000

—-&-=-AFC_random
400000 - h
200000
] - - T T T T T T e -—

Fig. 8 Non-concurrent constraints checks performed by AFC using different order heuristics on low
density DisCSPs (p; = 0.4)

@ Springer

192 Constraints (2006) 11: 179-197

700000 4

500000 + —e— AFC_static

500000 4 — = —AFC_ng_triggered
w 4000004 i i
8 ---m-- AFC_min_domain
8]

3000004

—-&--AFC_random
200000 4
100000
U - 1 T T - T - 1

Fig. 9 Non-concurrent constraints checks performed by AFC using different order heuristics on high
density DisCSPs (p; = 0.7)

This can be expected since in ABT_DO agents send additional order messages and
ok? messages to all their neighbors while in standard ABT, ok? messages are sent
only to lower priority agents. ABT_DO with domain size ordering sends more
messages than standard ABT but less than the random ordering version. The really
interesting result is that ABT_DO with the Nogood-triggered heuristic sends fewer
messages than ABT. Counting the additional ok? messages (sent to higher priority
agents) and the order messages, it still sends fewer messages than standard ABT on
the hardest DisCSP instances.

Figures 6 and 7 present the results of the ABT_DO algorithm using the same
heuristics on high density DisCSPs with p; = 0.7. The factor of improvement in run-
time of ABT_DO with the nogood-triggered heuristic over standard ABT is 2. Both
algorithms send a similar number of messages. The min-domain and the random
heuristic send more messages than standard ABT and perform a similar number of
non-concurrent constraint checks.

180000
160000 x
140000 N ~ -+ —ABT_DO_domain
120000
---m-- ABT_DO_ng
v 100000
2
800007 —-%--ABT_DO_random
60000
40000
20000 4
0 -— r T Pl
01 02 07 08 08

Fig. 10 Number of Nogood removed as a result of order changes by ABT_DO (p; = 0.4)

@ Springer

Constraints (2006) 11: 179-197

193

700000 4
500000 %
I - - —ABT_DO_domain
500000 ! '\
o
» 400000 4 ’In’ \. ---m--- ABT _DO_ng
o : Y
=z ! y
300000 4 i 3 —-3%--ABT_DO_random
! \
200000 oA
[N
Lt
100000 '.’ ; m \\‘.
S T
0 - & T T -f_\l-":‘-‘._—l e e i
01 02 03 04 05 06 07 08 08

Fig. 11 Number of Nogood removed as a result of order changes by ABT_DO (p; =0.7)

7.1. Heuristics Analysis

Dynamic ordering is a powerful heuristic used to improve the run-time of
centralized CSP algorithms [6, 8] and of distributed CSP algorithms with sequential
assignments [5, 17]. The results in the previous section, show that dynamic ordering
must be combined with the right heuristic in order to improve the run-time and
justify the overhead in message load of asynchronous backtracking. Surprisingly,
ordering heuristics that are very effective for sequential assigning algorithms are not
as effective when they are used by Asynchronous Backtracking.

Figures 8 and 9 present the results of the run of a sequential assignment
algorithm, Asynchronous Forward Checking (AFC) [16]. In AFC agents assign their
variables sequentially and perform consistency checks against the current partial
assignment concurrently. Although the heuristics used by AFC are the same
heuristics used by ABT_DO in the previous section, the results are very different.
All dynamic ordering heuristics used by AFC, improve the run of static order AFC.
The best heuristic is the min-domain heuristic.

800000
700000 A
£00000 A
500000
400000 -
300000 A

CCs

200000 A

100000

X —— ABT_DO_domain
r,‘:'\ _single
‘;} N - - —ABT_DO_domain
5/ W ---m--- ABT_DO_random

R _single
—-%-—ABT_DO_random

0

Fig. 12 Non-concurrent constraints checks performed by different versions of the ABT_DO

ordering heuristics (p; = 0.4)

@ Springer

194 Constraints (2006) 11: 179-197

2500000
*
—— ABT_DO_dormain
2000000 _single
— - —ABT_DO_domain
1500000
L ---m-- ABT_DO_random
8 _single
1000000 A —-%--ABT_DO_random
500000
0 - T T -

0B 07 08 D09

Fig. 13 Non-concurrent constraints checks performed by different versions of the ABT_DO
ordering heuristics (p; = 0.7)

It is interesting to try and understand the difference between the behavior of
asynchronous backtracking with dynamic ordering and that of sequential assignment
DisCSP algorithms like asynchronous forward checking To achieve some under-
standing one needs to remember that agents in asynchronous backtracking
constantly and asynchronously perform assignments against their current view of
the system. The state of the system viewed by an agent, includes its values, pruned
by either Nogood or some current assignments of higher priority agents. In standard
ABT a Nogood is discarded and its corresponding value is returned to the agent’s
current domain only when higher priority agents replace their assignments. In
Dynamic Ordering ABT, Nogoods can be discarded due to a change of order even
if the assignments included in the Nogood are not changed. For example, if agent A;
holds a Nogood ng which includes the assignment of a higher priority agent A;, if
agent A; is moved to a lower priority than A;, ng is no longer valid since values are
discarded only when they conflict with assignments of higher priority agents.

Another look at the tested heuristics with the above insight in mind reveals that
both the random heuristic and the min-domain heuristic do not take this property

380000
300000 :‘ —e— ABT_DO_domain
; Y _single
250000 - N — -+ —ABT_DO_domain
! \
w 200000 + ! N ---m-- ABT_DO_random
[©] _single
150000 A —-%--ABT_DO_random
100000
50000
0 - ! !

Fig. 14 Total number of Nogoods which are removed as a result of order changes by ABT_DO
using different versions of ordering heuristics (p; = 0.4)

@ Springer

Constraints (2006) 11: 179-197 195

1200000
1000000 - w —— ABT_DO_domain
N _single
800000 N -+ ~ABT_DO_domain

" ; | ---m-- ABT_DO_random

Q 600000 iomoh ~enge
. —-%--ABT_DO_random

400000 A

200000 A

Fig. 15 Total number of Nogoods which are removed as a result of order changes by ABT_DO
using different versions of ordering heuristics (p; = 0.7)

into consideration and that reordering agents according to them may cause the loss
of valid Nogoods. In contrast, ABT_DO using the Nogood-triggered heuristic rarely
removes Nogoods due to changes of order. In ABT, an agent sends a No good to
the lowest priority agent among the higher priority agents whose assignment is
included in one of its Nogoods [2, 25]. This means that if an agent A; is moved by
agent A; to a place immediately following A;, all the assighments of agents that were
previously ordered between A; and A; are removed from A;’s Nogoods. Since these
assignments were not involved in the No good, all of A;’s previous No goods are still
valid.

Figures 10 and 11 present the total number of Nogoods removed by ABT_DO, as
a result of order changes. The Nogood — triggered heuristic loses a very small
number of Nogoods as a result of order changes. The number of Nogoods removed
by the random and the min domain heuristic is much larger.

In sequential assignment algorithms only the next variable to be assigned is
selected by the heuristic. In ABT_DO all unassigned agents can be reordered.
Figures 12 and 13 present a comparison between two versions of the random and the
min-domain heuristics. Each heuristic was performed in two different versions. In
one, after each assignment all lower priority agents are reordered according to the
heuristic, in the other only the agent which will have the highest priority among the
lower priority agents is chosen by the heuristic and the other agents keep their
places from the previous heuristic (these heuristics are called single in the presented
figures). The results are clearly in favor of the single version of the heuristics.

Figures 14 and 15 present a possible explanation for these results. It is clear that
the single versions of the heuristics remove fewer Nogoods due to order changes
than the heuristics that order all of the lower priority agents.

8. Conclusions

Most of the studies of Asynchronous Backtracking used a static order of agents and
variables [2, 10, 20, 25]. An exponential space algorithm that used dynamic ordering

@ Springer

196 Constraints (2006) 11: 179-197

has shown improvement in run-time over ABT [25]. The only study that suggested
dynamic ordering in ABT with polynomial space used a complex method including
additional abstract agents [21]. The results presented in [21] show a minor
improvement compared to standard, static order, ABT.

The present study proposes a simple way of performing dynamic ordering in
ABT with polynomial space. The ordering is performed as in sequential assignment
algorithms by each agent changing only the order of agents following it in the
current order. A simple method of time-stamping [17] is used to determine the most
updated proposed order.

When a heuristic order inspired by dynamic backtracking [9] is used to
dynamically reorder agents, there is a significant improvement in run-time and
network load over standard ABT.

Acknowledgments Supported by the Lynn and William Frankel Center for Computer Sciences
and the Paul Ivanier Center for Robotics and Production Management.

References

1. Bacchus, F., & van Run, P. (1995). Dynamic variable ordering in csps. In Proc. Principles and
Practice of Constraint Programming (CP-95) (pp. 258-275).

2. Bessiere, C., Maestre, A., Brito, L., & Meseguer, P. (2005). Asynchronous backtracking without
adding links: A new member in the abt family. Artificial Intelligence, 161(1-2), 7-24 (January).

3. Bessiere, C., Maestre, A., & Messeguer, P. (2001). Distributed dynamic backtracking. In Proc.
Workshop on Distributed Constraint of IJCAIOI.

4. Bessiere, C., & Regin, J. C. (1995). Using bidirectionality to speed up arc-consistency processing.
Constraint Processing (LNCS 923) (pp. 157-169).

5. Brito, I., & Meseguer, P. (2004). Synchronous,asnchronous and hybrid algorithms for discsp. In
Workshop on Distributed Constraints Reasoning (DCR-04) CP-2004. Toronto (September).

6. Dechter, R. (2003). Constraint Processing. Morgan Kaufman.

7. Frost, D., & Dechter, R. (1994). In search of the best constraint satisfaction search. In Proc.
Twelfth National Conference of Artificial Intelligence (AAAI-94) (pp. 301-306). Seattle, USA
(August).

8. Gent, 1. P., Maclntyre, E., Prosser, P., Smith, Barbara M., & Walsh, T. (1996). An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction problem. In
Principles and Practice of Constraint Programming (pp. 179-193).

9. Ginsberg, M. L. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research, 1, 25—
46

10. Hamadi, Y. (2001). Distributed interleaved parallel and cooperative search in constraint
satisfaction networks. In Proc. IAT-01. Singapore.

11. Hamadi, Y., & Bessiere, C. (1998). Backtracking in distributed constraint networks. In Proc.
ECAI-98 (pp. 219-223). Brighton (August).

12. Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14, 263-313.

13. Lamport, L. (1978). Time, clocks, and the ordering of events in distributed system.
Communications of the ACM, 2, 95-114 (April).

14. Lynch, N. A. (1997). Distributed Algorithms. Morgan Kaufmann Series.

15. Meisels, A., Razgon, I., Kaplansky, E., & Zivan, R. (2002). Comparing performance of
distributed constraints processing algorithms. In Proc. AAMAS-2002 Workshop on Distributed
Constraint Reasoning DCR (pp. 86-93). Bologna (July).

16. Meisels, A., & Zivan, R. (2003). Asynchronous forward-checking for distributed csps. In W.
Zhang (Ed.), Frontiers in Artificial Intelligence and Applications. 10S.

17. Nguyen, T., Sam-Hroud, D., & Faltings, B. (2004). Dynamic distributed backjumping. In Proc.
5th Workshop on Distributed Constraints Reasoning DCR-04. Toronto (September).

18. Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence, 9, 268-299.

@ Springer

Constraints (2006) 11: 179-197 197

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Prosser, P. (1996). An empirical study of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence, 81, 81-109.

Silaghi, M. C., & Faltings, B. (2005). Asynchronous aggregation and consistency in distributed
constraint satisfaction. Artificial Intelligence, 161(1-2), 25-54 (January).

Silaghi, M. C., Sam-Haroud, D., & Faltings, B. (2001). Hybridizing abt and awc into a
polynomial space, complete protocol with reordering. Technical Report 01/#364, EPFL (May).

Smith, B. M. (1996). Locating the phase transition in binary constraint satisfaction problems.
Artificial Intelligence, 81, 155-181.

Solotorevsky, G., Gudes, E., & Meisels, A. (1996). Modeling and solving distributed constraint
satisfaction problems (dcsps). In Constraint Processing-96, (short paper) (pp. 561-562). Cam-
bridge, Massachusetts, USA (October).

Yokoo, M. (1995). Asynchronous weak-commitment search for solving distributed constraint
satisfaction problems. In Proc. Ist Intrnat. Conf. on Const. Progr. (pp. 88-102). Cassis, France.

Yokoo, M. (2000). Algorithms for distributed constraint satisfaction problems: A review.
Autonomous Agents & Multi-Agent Sys., 3, 198-212.

Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). Distributed constraint satisfaction
problem: Formalization and algorithms. /EEE Trans. Data Kn. Eng., 10, 673-685.

Zivan, R., & Meisels, A. (2003). Synchronous vs asynchronous search on discsps. In Proc. Ist
European Workshop on Multi Agent System, EUMAS. Oxford (December).

Zivan, R., & Meisels, A. (2006). Message delay and asynchronous discsp search. Archives of
Control, (accepted for publication).

Zivan, R., & Meisels, A. (2006). Message delay and discsp search algorithms. Annals of
Mathematics and Artificial Intelligence (AMAI), (accepted for publication).

@ Springer

	Dynamic Ordering for Asynchronous Backtracking �on DisCSPs
	Abstract
	Introduction
	Distributed Constraint Satisfaction
	Asynchronous Backtracking (ABT)

	HypFig1
	Outline placeholder
	Dynamic Ordering in centralized algorithms
	ABT with Dynamic Ordering
	Correctness of ABT_DO

	HypFig2
	HypFig3
	Outline placeholder
	Experimental Evaluation

	HypFig4
	HypFig5
	HypFig6
	HypFig7
	HypFig8
	HypFig9
	HypFig10
	Outline placeholder
	Outline placeholder
	Heuristics Analysis

	HypFig11
	HypFig12
	HypFig13
	HypFig14
	Outline placeholder
	Conclusions

	HypFig15
	Outline placeholder
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

