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Abstract

As search spaces become larger and as problems scale up, an ef-
ficient way to speed up the search is to use a more accurate heuristic
function. A better heuristic function might be obtained by the follow-
ing general idea. Many problems can be divided into a set of sub-
problems and subgoals that should be achieved. Interactions and con-
flicts between unsolved subgoals of the problem might provide useful
knowledge which could be used to construct an informed heuristic
function. In this paper we demonstrate this idea on the graph parti-
tioning problem (GPP). We first show how to format GPP as a search
problem and then introduce a sequence of admissible heuristic func-
tions estimating the size of the optimal partition by looking into dif-
ferent interactions between vertices of the graph. We then optimally
solve GPP with these heuristics. Experimental results show that our
advanced heuristics achieve a speedup of up to a number of orders
of magnitude. Finally, we experimentally compare our approach to
other states of the art graph partitioning optimal solvers on a number
of classes of graphs. The results obtained show that our algorithm
outperforms them in many cases.

1 Introduction and overview

The A* algorithm [14] is an admissible best-first algorithm which uses a cost function
of the formf(n) = g(n) + h(n), whereg(n) is the actual distance from the initial
state to the current state andh(n) is a heuristic estimation of the cost from noden to
the nearest goal. Ifh(n) never overestimates the actual cost from noden to a goal
then we say thath(n) is admissible. When using an admissible heuristich(n), A* was
proved to be admissible, complete and optimally effective [7]1 The main weakness

1We say that an algorithm isadmissibleif it is guarantied to return an optimal solution. An algorithm
is completeif it is guarantied to return a solution if one exists.Optimally effectivemeans that its time
complexity is a lower bound.
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of A* is its exponential memory complexity [24] - A* usually exhausts the available
memory very quickly.

1.1 Linear space search algorithms

Iterative-deepening A* (IDA*) [24] is a variant of A* which solves this memory prob-
lem. The memory complexity of IDA* is linear in the maximum search depth, rather
than exponential as in A*. IDA* is actually a sequence of iterations of DFS. In each
iteration it expands all the nodes having a total cost not exceeding a given global thresh-
old for that iteration. The threshold for the first iteration is the cost of the root of the
search tree. The threshold for the next iteration is the lowest cost of a generated node
from the current iteration that exceeded the current threshold. The algorithm halts
when a goal node is chosen for expansion. When using an admissible heuristic, IDA*
generates new nodes in a best-first order. In this paper we use this algorithm to solve
the graph partitioning problem.

Another algorithm used in this paper is Depth-First Branch and Bound (DFBnB)
[40]. DFBnB is effective when the depth of the solution in the search tree is known in
advance. DFBnB performs a depth-first search of the tree but uses a global threshold
for pruning nodes. This threshold is the best solution that has been found so far. At
the beginning of the search, this threshold is set to infinity and DFBnB arrives at a
solution in one dive into the tree. The threshold is set to the cost of that solution and
the depth-first search process is continued until a better solution is found. When we
arrive at a node where the cost function is greater than the current threshold we know
that solutions under that node will not be better than the best solution and the subtree
under that node can then be pruned. DFBnB begins with a solution and improves it
until it attains the optimal solution. It then keeps searching the tree to verify that a
better solution is not feasible. Thus, in that sense, DFBnB is an anytime algorithm.

It was proven that an admissible search algorithm must visit at least all the nodes
visited by A* [7]. IDA* does not visit any other node but visits some nodes more than
once. DFBnB never visits any node more than once but visits many nodes not visited
by A*. See [40] for more comparisons between these two algorithms.

1.2 Other memory efficient search algorithms

After IDA* and DFBnB were introduced, memory constraints were no longer a prob-
lem since both algorithms use a depth-first search mechanism for traversing the search
tree and therefore use memory which is only linear in the depth of the search. As com-
puter memories became larger one approach taken by many researchers was to develop
better search algorithms by taking advantage of the large memory available. MREC
[37], MA* [4] and SMA* [35] are all based on A* but differ in the ways they proceed
when the memory is full. They all continue to execute A* until the memory is almost
full. When the memory is full, MREC begins to execute IDA* on the leaves of the
search tree which is currently stored in memory. MA* and SMA*, on the other hand,
delete bad nodes from the open-list thus freeing memory for new nodes. The strength
of these approaches is that these algorithms are general and can be applied to almost
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any domain. Their weakness is that they are more complicated than IDA* and that their
improvement over IDA* is somewhat modest.

1.3 Improving the heuristic function

A somewhat better approach to speed up the search is to look for a more accurate ad-
missible heuristic function where the search would be guided faster towards the goal
state and a smaller number of nodes will be generated. However, in order to obtain a
more accurate heuristic function, a larger overhead will be caused by each node, re-
sulting in a larger constant time per node. In general, the smaller number of generated
nodes tends to compensate for the larger overhead resulting in a significant improve-
ment in the running time.

Several methods were developed to attain better heuristic functions by storing large
tables in memory. Both Perimeter Search (PS) [8] and BIDA* [28] are algorithms that
store a large table in memory containing all the nodes surrounding the goal node up
to a fixed depth. These nodes are called theperimeter nodes.The heuristic function
used is the estimation of the distance between a noden and the closest node to it in the
perimeter. Adding this amount tog(n) and to the depth of the perimeter results in a
more accurate heuristic in comparison to the regular heuristic to the goal.

Another method for intelligent usage of memory in order to attain a better heuristic
is thepattern databasemethod which was first used to solve the Fifteen Tile puzzle in
[6] and Rubik’s cube in [25]. This method was taken further in [27] and then in [26, 11]
where a number of disjoint sets of pattern databases were used to solve the Fifteen and
Twenty-Four Puzzles. Pattern databases have also made it possible to significantly
shorten the length of solutions constructed using a macro-table [16] and have proven
useful in heuristic-guided planning [9].

In a pattern database system we group together a number of subgoals such as indi-
vidual tiles in the tile puzzles or individual cubies in Rubik’s cube. We then calculate
the costs of solving this set of subgoals for all their possible combinations in any pos-
sible state of the problem without looking at other subgoals. These values contain the
costs of solving the specific set of subgoals while considering interactions and conflicts
between them. The costs are stored in a lookup table consulted during the search. The
cost of solving a set of subgoals is used as a lower bound estimation on the optimal
distance to the goal of the complete state which also includes all the other subgoals.
In general, experimental results of all these heuristics show an impressive reduction in
the number of generated nodes and in the actual running time when comparing them
to simple heuristics such asManhattan distancein the tile puzzle. The reduction was
sometimes a number of orders of magnitude. The weakness of these approaches is that
they are domain dependent and also that a large amount of memory is needed to store
these large databases.

An important discussion about new methods for improving search algorithms was
presented in [20]. The authors conclude that using domain specific enhancements is
usually superior in performance over domain independent enhancements. They show
empirical evidence from the game of Sokoban to support their claims and indeed show
many domain specific enhancements for that game which greatly reduce the search
effort. The challenge would be to introduce search enhancements that are as general
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as possible and thus might be implemented in many domains. This generality does
not necessarily mean that this method can be activated for every domain with no do-
main specific adjustments. It does mean that one has to follow this general idea when
implementing it but must also consider domain-specific constraints and behavior in or-
der to adjust this idea to the specific domain in question so as to achieve an effective
enhancement.

In this work we show how general complicated heuristics can be applied to the
graph-partitioning problem. A general idea for improving on simple heuristics given
that there exist a number of subgoals to achieve in the search task is the following.
While simple heuristics (e.g., the Manhattan distance for the tile puzzles) consider
each individual subgoal alone, complicated heuristics look deeper into interactions and
conflicts between a number of unsolved subgoals and use this knowledge to attain a
more accurate heuristic function. This idea of calculating conflicts and interactions
between unsolved subgoals is one of the advantages of the pattern database systems
described above. We used this general idea when constructing our heuristics for the
graph partitioning problem and we will show our work in this paper.

The main contribution in our approach is twofold. First, we present an optimal
solver for the graph partitioning problem which outperforms the best existing solvers
in many cases. Second, we show how to apply search techniques from Artificial Intel-
ligence to successfully solve a problem from another area of computer science.

This paper is organized as follows. Section 2 introduces the graph partitioning
problem and discusses related work. In sections 3, 4 and 5 we describe our search
algorithm and our new heuristic functions. Section 6 presents experimental results that
show the benefit of using our advanced heuristic functions. Section 7 experimentally
compares our approach to other state of the art graph partitioning optimal solvers. Sec-
tion 8 presents conclusions and future work.

2 The graph partitioning problem

In a graph partitioning problem (GPP), we are given a graph with an even number of
vertices and must divide all the vertices of the graph into two equal-sized subsets, so
that the number of edges from any vertex in one subset to one in the other is minimized.
This problem has many practical applications such as compiler design, load balancing
and the physical layout of VLSI circuits where the vertices are circuit elements and the
edges are wires connecting them. In the simple form of this problem, we assume that
all edges have a uniform weight of one.

To solve this problem using heuristic search, we form a search tree where each node
corresponds to a partial partition of the vertices of the graph.2 We order the vertices
in the graph in some order, and then search a binary tree where each level of the tree
corresponds to a different vertex. At each node of the search tree, the left branch would
assign the corresponding graph vertex to one subset and the right branch would assign
it to the other subset. If the number of vertices in the graph isn then this tree is a binary
tree of depthn − 1. While leaves of such a binary tree correspond to the2n different

2Throughout this work we will use the termvertexto denote a vertex of the input graph and the termnode
to denote a node of the search tree.
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subsets ofn, we are only interested in the leaves that partition the vertices into equal
size subsets. Therefore, each subtree rooted by a node where one of the partitions has
more than half of the vertices is pruned.

At any given nodek of the search tree, corresponding to a partial solution, some
of the vertices have already been assigned and some not. As a result, some edges of
the graph already go from a vertex in one subset to a vertex in the other. We call
the number of such edgesg(k), since they represent the cost already incurred by the
partial solution represented by nodek. In the following sections we present a series of
admissible heuristics to get a lower-bound estimate on the remaining number of edges
that must cross the partition, given the partial partition. We call this numberh(k).
Each of these heuristics looks more deeply than its predecessor into interactions and
conflicts between unassigned vertices and on edges that connect such vertices. We can
then use any admissible search algorithm with the cost function off(k) = g(k)+h(k)
in order to search the tree and find an optimal solution. We will show that even though
the overhead in time per node for calculating more complicated heuristics is greater,
we get a large improvement in the number of generated nodes, and thus the overall time
needed to solve a problem is significantly reduced. We then compare our approach to
other existing GPP optimal solvers and show that in many cases we outperform them.

2.1 Related work

2.1.1 Suboptimal solution

Since the GPP is known to be NP-hard [13], most of the algorithms that solve it were
developed to find a sub-optimal solution to the problem. A large portion of these algo-
rithms are based on local search. In a local search, we begin with any feasible solution
dividing the vertices into two subsets. Then, we start swapping pairs of vertices be-
tween the subsets as long as the cost of the solution decreases. This local search may
get caught up in a local optimum and therefore does not guarantee an optimal solution.
Many algorithms were developed in order to improve this local search schema. These
algorithms differ in the way they generate the neighbors of a given feasible partition.

Perhaps the most popular of these improvements is the KL algorithm [23]. It uti-
lizes the fact that some vertices are more strongly connected than others and it swaps
groups of vertices instead of just a pair of vertices between the two partitions. With
this method there is a potential of escaping some local optimum.

Another well known improvement to the above local search schema was developed
in [18]. This work introduces an algorithm for solving the GPP based on simulated an-
nealing (SA). SA is a stochastic optimization algorithm which starts with a partitioning
and improves it by using a probabilistic hill-climbing strategy. Several studies were
conducted using the concept of genetic algorithms (GA). In these works there is a large
population of different partitionings. New generations are evolved from the current
population by using genetic algorithms techniques. The most recent approach for ge-
netic algorithms is presented in [3] which also summarizes previous genetic algorithm
approaches. An approach to solve the GPP with the help of a learning automata was
presented in [29].

Another known algorithm is the Extended Local Search algorithm (XLS) [32].
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While in most local searches a vertex can only be swapped once between the two
partitions, XLS allows a vertex to be swapped more than once. In this way, previous
bad decisions can be corrected and we can escape local optimum more effectively.

All the above algorithms are based on local search and their search space is actually
all the different complete partitionings. In this sense, their search space is limited to
the leaves of the tree that was presented above. They provide different methods of how
to move between these leaves.

A somewhat different and new approach was presented in [34]. This is an effi-
cient programming technique for solving the GPP, based on Lagrangian relaxation and
subgradient search. This mathematical programming technique offers an advantage
because it produces a lower bound on the solutions. This bound information is useful
as we are able to evaluate the quality of any given solution at any time.

GPP is very important from a parallel computational point of view because a bal-
anced partitioning minimizing the crossing edges corresponds to low communication
overhead. Several research groups in mathematic and computer science have built en-
tire systems for solving these problems. There are a number of competing tools such
as Chaco [15], Jostle [39], Metis [22], Scotch [31] and PARTY [33]. Most of these
solvers apply parallel search and lower bounds based on integer program relaxation as
well as other heuristic approaches. We refer the reader to [36] which has a compre-
hensive survey on these methods and tools. This survey divides these heuristics into
the following classes: Geometric Scheme, Spectral Methods, Combinatorial Schemes,
Multilevel Schemes, Dynamic Repartitioners and Parallel Graph Partitioners.

These tools and algorithms are designed to find suboptimal solutions and are usu-
ally used to partition very large graphs. Because of the practical nature of these al-
gorithms, many of them are tailored to partition special classes of graphs and their
behavior will degrade on another class of graphs or on random graphs. Most of these
tools are usually designed to work on parallel processors. For example, extremely
large graphs (over 0.5 billion vertices) have been partitioned on machines consisting of
thousands of processors. For more details see [36].

2.1.2 Optimal solutions

While the above algorithms and tools are somewhat related to our work we present
a completely different approach as we want to find optimal solution to the GPP and
thus can only handle graphs of small size since the problem is known to be NP-hard.
In order to find an optimal solution to an NP-hard problem a systematic global search
must be used. We use such a schema but develop methods to prune a large portion of
the search space with the help of our new heuristics. Unlike some of the methods and
tools described above, our algorithm is general and is not restricted to a specific type
of graph.

A number of different approaches for obtaining optimal solutions to the GPP have
been presented. An exact solution to this problem based on branch-and-cut and lin-
ear programming relaxation or on other methodologies such as column generation or
bounding functions were proposed [2, 12, 19, 5]. However, all these exact solutions
are usually limited to somewhat small graphs of size 60 or smaller.

Recently, more approaches that optimally solve this problem for larger graphs were
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presented. In 2000, Karisch et al. [21] presented a branch-and-cut method for the
general graph partitioning problem. Their method is based on a cutting plane approach
combining semidefinite and polyhedral relaxations. Their search tree is similar to our
search tree described above. However, they cut irrelevant parts of the tree by using the
cutting plane approach which identifies violating inequalities.

In 2001, Sensen [38] presented an algorithm for finding exact solutions to GPP
using Multicommodity Flows. This approach first finds a lower bound for the problem.
The lower bound is based on the well known lower bound of embedding a clique into
the given graph with minimal congestion which is equivalent to a multicommodity flow
problem where each vertex sends a commodity of size one to every other vertex. Then,
this bound is used to find a feasible solution by a branch and bound algorithm.

Since these are the state of the art optimal GPP solvers, we compare their results to
our approach and present experimental evidence to show that our approach is a strong
competitor to these approaches. We will present experimental results showing that our
method outperformed these methods on many graphs.

3 The different cost functions

We have already defined the search tree above in section 2. In each node of the search
tree some of the vertices of the graph were already assigned to one of the sets of the
partition and some were not. In order to find an optimal solution, we need an admissible
cost function for that node. This cost function should be a lower bound on the number
of edges that must cross the partition given the partial partition of the node. Below, we
propose several methods that suggest such cost functions.

We also give a mathematical analysis of the time complexity of calculating the
different heuristics. Note that for the search algorithms we use either IDA* or DFBnB
described above. Both algorithms use a depth-first search mechanism. Thus, in each
generated node we only need to make the necessary changes from its parent and undo
these changes when backtracking from that node.

3.1 Definitions

For simplicity, throughout the discussion we will assume that the edges of the input
graph have uniform weights of 1. We will then show how to apply the presented tech-
niques to a weighted graph.

• Let n denote the number of vertices in the input graph.

• We will usex to denote a vertex in the graph andk to denote a node in the search
tree.

• For each node of the search tree we call the vertices that were already assigned
to one of the parts of the partition theassignedvertices. Vertices that are have
not been assigned yet are called thefreevertices.

• We denote the two sets of the partition that are being build up during the search
A andB. Vertices inA andB are the assigned vertices.
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• Within each node of the search tree some of the vertices are free. Each of the
suggested heuristic functions below, divides the free vertices into two sets -A′

and B′. These sets will respectively complete setsA and B of the assigned
vertices in the final partitioning. In other words,{A∪A′} and{B ∪B′} are the
two sets of the final partitioning).

• For each node of the search tree we can divide the edges of the graph into four
types:

1. Type I: Edges within{A ∪ A′} or within {B ∪ B′}. These edges do not
cross the partition and therefore will not be counted by any heuristic.

2. Type II: Edges fromA to B. These edges are already crossing the partition.

3. Type III: Edges from a free vertex to an assigned vertex of the opposite set,
i.e., either edges fromA′ to B or fromB′ to A.

4. Type IV: Edges between two free vertices from opposite sets, i.e., edges
from A′ to B′.

assigned  A  B

   A+A’            B+B’

III

II

IV

    5                       free

     1                       
I

free:
A’={5, 6}  B’={7, 8}.

    6                       
7
8

     2                       

3
4

   1    3
   2    4

Figure 1: The partition and different edge types.

• For each free vertexx we defined(x,A) andd(x,B) to be the number of edges
connected betweenx and vertices fromA or B, respectively. If we place a free
vertexx in A′ then we know thatd(x,B) edges that connectx to vertices inB
will cross the partition.

Figure 1 illustrates a node of the search tree. The search tree assigns vertices 1 and
2 toA and vertices 3 and 4 toB. The heuristic function then completes the partitioning
by placing 5 and 6 inA′ and putting 7 and 8 inB′. Therefore the edge(1, 2) is of
type I, (1, 4) is of type II, (2, 7) is of type III while edge(6, 8) is of type IV. As the
heuristics that we describe below become more complicated, they include more types
of edges.

3.2 f0: Uniform cost search.

The first cost function used, mainly for comparison reasons, is the trivial cost function.
If k is a node in the search tree letg(k) be the number of edges crossing the partial
partitioning associated with that node.g(k) is therefore the number of edges between
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vertices that are assigned to different parts of the partial partitioning or actually edges
of type II. Thus we define:

f0(k) = g(k).

This trivial cost function is usually called uniform cost search (UCS) since it only
evaluates the steps that have already been taken for the current node. We call this cost
functionf0 since it does not have any heuristic evaluation on any of the free vertices.
f0 is simple to compute but is also inefficient.

3.2.1 Computational complexity off0

For the purpose of the computational complexity analysis of the different cost functions
we make the following definitions.

• We are generating a new nodek where a free vertexz is assigned (without loss
of generality)to theA subset of the partition.

• Let d be the degree ofz, i.e., the total number of neighbors ofz.

• Let r denote the number of free vertices at a given point. Note that during the
course of the searchr decreases fromn to 0.

• Let dr, dA anddB be the number of neighbors ofz that are currently free, and
already assign toA andB respectively. Note thatdr + dA + dB = d.

To calculatef0 we need to maintain a counter that keeps the number of crossing
edges at all times. For the root node, this number is initialized to be 0. The overhead
for each new nodek is as follows. We need to loop over all thed neighbors ofz and
increment the counter for each neighbor on the other side of the partition,B. We do
this dB times. If we save the value ofdB in that node then when backtracking from
this node we can decrement the counter bydB at a constant timecm. Let cq be the time
taken to query each neighbor and letc0 be the time taken to increment the counter. The
complexity forf0 is:

T (f0) = cqd + c0dB + cm = O(d)

3.3 f1: Edges from free to assigned vertices.

For each free vertexx, we definedd(x,A) andd(x, B) as the number of edges from
x to vertices already assigned toA or to B. If x is assigned toA thend(x,B) more
edges will cross the partition. Ifx is assigned toB then the number will bed(x, A).
An admissible heuristic forx would therefore be

h1(x) = min(d(x,A), d(x,B)).

This number is a safe lower bound on the number of edges that will cross the partition
due tox. Summingh1(x) for all free vertices will yield an admissible heuristic on the
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number of edges that must cross the partition. Therefore, for each node in the search
tree,k, we define:

h1(k) =
∑

x∈free(k)

h1(x).

Thus, the corresponding cost function that we use is

f1(k) = g(k) + h1(k).

h1 assigns each free vertex either toA′ or toB′ by looking into potential edges of type
III. The h1 heuristic only looks on each free vertex alone and is not concerned with the
interaction between any two free vertices. In this sense,h1 can be associated with the
Manhattan distancein the tile puzzle domain. The Manhattan distance heuristic, also,
counts the number of positions that a tile is away from its goal position and does not
look at interactions and conflicts between two tiles that are not in their goal positions.

3.3.1 Computational complexity off1

In order to calculatef1 then for each free vertexx, we need to maintaind(x,A),
d(x,B) and their maximum accurate at all times. At the root node they are all initial-
ized to 0 since bothA andB are empty. Then, at each new node we have the following
overhead. We now need to loop over all the neighbors ofz and for each free neighbor
w, we need to incrementd(w, A) and then updatemax(d(w, A), d(w, B)). Assume
the time taken to do this isc1. When backtracking from this node, we again loop over
all the neighbors ofz, and for free neighbor,w, we need to decrementd(w, A) and
restoremax(d(w,A), d(w, B) to its previous value. Thus, we multiple this part of the
overhead by 2. The complexity forf1 is therefore,

T (f1) = T (f0) + 2c1dr = cqd + c0dB + cm + 2c1dr = O(d)

3.4 f2: Sorting the free vertices

Assume thatG is a graph withn vertices and thatG has a partial partition into setsA
andB, with the cardinality ofA andB beinga andb respectively. Since in a balanced
partition there must ben/2 vertices in each set then we know thatn/2−a free vertices
must be placed inA′ so that in the end the number of vertices inA ∪ A′ will be n/2.
Similarly, n/2 − b other vertices must be placed inB′. Thus, we have to partition the
n− a− b free vertices into two sets with cardinalitiesn/2− a andn/2− b. With f1,
we do not look into this but rather place each free vertex in one of the subsets without
considering where the other free vertices went. Thus, forf1, an unbalanced partial
partition that has most of the vertices on one side will tend to have a low heuristic
value, since assigning most free vertices to the set with most of the assigned vertices
will generate few crossing edges. We solve this problem as follows. For each vertexx
from then− a− b free vertices, we define:

NA(x) = d(x, A)− d(x,B)

NB(x) = d(x, B)− d(x,A).
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Vertex d(x,A) d(x,B) NA(x) NB(x) part

a 3 1 2 -2
b 2 1 1 -1 A′

c 1 1 0 0
d 1 2 -1 1
e 1 3 -2 2 B’
f 2 5 -3 3

Table 1: Free vertices that are left for theh2 heuristic.

NA(x) denotes the advantage of placingx in A′ over placing it inB′. If, for
example,NA(x) = 3, it infers that it is preferable by three edges to placex in A′ than
to place it inB′. Note thatNB(x) = −NA(x). Now, we sort then− a− b unassigned
vertices in decreasing order ofNA(x). We take the firstn/2 − a vertices and place
them inA′ (the set of vertices that will completeA). The rest of the vertices (which
are then/2 − b vertices that have the bestNB(x) value) will be placed inB′. This is
an admissible way to partition these vertices toA andB and then have both partitions
with n/2 vertices. After constructingA′ andB′ we define:

h2(x) =
{

d(x,B) if(x ∈A’ )
d(x,A) if(x ∈ B′)

}

Summingh2(x) for all x in the free graph will yield an admissible heuristic which
is never worse but usually better thanh1 since inh1 we took the minimum between
d(x,A) andd(x,B) while in h2 we sometimes take the maximum between them.

For example, suppose that we are left with six unassigned vertices as illustrated in
Table 1. Suppose we need to take four vertices toA′ and two toB′. The four vertices
with the bestNA(x) area, b, c, andd (they areA′). The totalh2 heuristic for these
vertices will be the sum of theird(x,B) which is1 + 1 + 1 + 2 = 5. Verticese andf
will go to B′ with a heuristic of2+1 = 3. Theh2 heuristic here is therefore3+5 = 8.
Note thath1 would assign vertexd to B′ and taked(d,A) = 1 as its heuristic, while
h2 would assign it toA′ and taked(d,B) = 2. h2 is still admissible but in this case is
larger thanh1. While f1 divided the free vertices into two sets with arbitrary sizes,f2

divides them so that the resulting sets are balanced. Thus we define:

f2(k) = g(k) + h2(k)

Whereh2(k) is calculated by sorting the free vertices by decreasing order ofNA(x),
splitting the sorted list intoA′ andB′ and then summing the number of edges (of type
III) that cross the partition.

Note that the sorted list can be calculated once for the root node of the search tree
and only incremental changes are made when traversing the tree. In fact, we used an
incremental version of bucket sort. Each distinct value ofNA(x) had a unique bucket
(wheren is an upper bound for the number of buckets). Now, we need to loop over all
the free neighbors ofz and move them to their new bucket.
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3.4.1 Computational complexity off2

We now have to maintain all the free vertices sorted at all times by decreasing order
of NA so that we can cut them intoA′ andB′. We keep them sorted in buckets where
each bucket corresponds to a distinct value ofNA. All the vertices in a given bucket are
cross referenced in a linked list. At the root node theNA value of all the free vertices
is initialized to 0 since bothA andB are empty. As inf1 we need to loop over all
the neighbors ofz and for each free neighborw we need to incrementd(w, A). Here,
however, a change ind(w, A) also increases itsNA and it might propagate in the sorted
list to another bucket. For doing this, we need to removew from its bucket and place
it in the succeeding bucket while also updating the necessary pointers inside the two
buckets. Letc2 be the time it takes to do all this. Naturally, all these changes should be
undone when backtracking from a node and similar tof1 we multiple this part of the
overhead by 2.

Thus the complexity forf2 is:

T (f2) = T (f0) + 2c2dr = cqd + c0dB + cm + 2c2dr = O(d)

As will be shown below, it turns out that the number of nodes per second off1 is
more than twice greater than that off2. This is because the overhead of maintaining the
buckets ofNA and the pointers involved consumes much more time than just updating
two variables.

3.5 f3: Adding edges from two free vertices tof2

Following the general idea of looking deeper into interactions between unsolved sub-
goals we now want to look closer at edges of type IV. These are edges between free
vertices that will be assigned later to different components. For this purpose we define
the free graph. Vertices of thefree graphare the free vertices and the edges are edges
from the input graph where the two vertices connected by them were assigned to the
opposite component byh2. Edges of the free graph are actually all the edges of type
IV. The free graph is a bipartite graph where the two sets of the graph areA′ andB′.

assigned

A’:{5,6}  B’:{7,8}
8
7

 6

4
3

     2                       

   2    4
   1    3

5

graph
The free

vertices
free

     1                       

   A+A’            B+B’

  A  B

Figure 2: The free graph.

Figure 2 illustrates the free graph. The vertices of this graph are vertices 5, 6, 7 and
8. Edges of this graph are the bold edges and connect only edges between free vertices
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that were placed in different components. We would like to add as many edges from
the free graph toh2 without loosing admissibility.

For a reason that will become clear below, suppose that we want to move a vertex
x from A′ to B′. In that caseNA(x) = d(x, A) − d(x,B) edges will be added to
the partition. However, since we want both parts of the partition to be balanced, some
other vertexy from B′ should be swapped withx. In that caseNB(y) or (−NA(y))
more edges should also be added to the partition. Thus, if we are forced to movex
from A′ to B′ we want to find a vertexy from B′ with the best (smallest)NB(y), (or
largestNA(y)), since it will add the minimum number of edges of type III if it moves
from B′ to A′. Since forh2, we already have all the vertices of the free graph sorted
by theirNA value, it is very simple to spot a vertex inB′ with the bestNA value. We
call this vertex theswappablevertex and denote itSB′ . Once thisSB′ is spotted, the
number of edges to be added when moving a vertexx from A′ to B′ will be at least
NA(x)−NA(SB). We denote this numberN(x). In a symmetric manner, if we want
to move a vertexx from B′ to A′ we should spot aswappablevertexSA′ in A′ with the
best (smallest)NA value. The number of edges of type III to be added in such a case
will be at leastNB(x)−NB(SA′). Therefore, after these swappable vertices fromB′

andA′, SB′ andSA′ , are spotted we define:

N(x) =
{

NA(x)−NA(SB′) if(x ∈ A′)
NA(SA′)−NA(x) if(x ∈ B′)

}

N(x) stands for the ”number of edges that are allowed for x”.N(x) is a lower bound
on the number of edges of type III that will be added toh2 if we movex from the
component of the partition that was suggested byh2 and swap it with some other vertex
of the other component.

Suppose thatx is placed inA′ by h2 and is connected to a number of vertices
from B′ (edges of type IV).N(x) is therefore an upper bound on the number of such
edges that can be added toh2 without loosing admissibility. We can add as many edges
connected tox of type IV to h2 as long as the overall heuristic forx does not exceed
the possibility of placingx in the other component which will addN(x) edges to the
partition. For each vertexx, N(x) edges of type IV can be safely added, because if
we movex to the other component we must add a number of edges of type III that are
uniquely connected to this vertex (and the corresponding swappable vertex) from other
assigned vertices and are not related whatsoever to the free graph. This number is at
least as large as the number of edges of type IV that we added.

Consider again the example in Table 1. The swappable vertex inB′ (the vertex with
the bestNA value) is vertexe with NA(e) = −2. Now, consider vertexa. N(a) =
NA(a) − NA(e) = 2 − −2 = 4. As long as the number of edges from the free
graph that we add to vertexa is not greater than 4 we do not lose admissibility. This
is because only if it is greater than 4 it may be worthwhile exchanginga ande. The
swappable vertex inA′ is vertexd with NB(d) = 1. If we takef , for example, then
N(f) = NB(f)−NB(d) = 3− 1 = 2. Only two edges are allowed forf . Otherwise
we may want to swap f and d.

We want to take as many edges as possible from the free graph such that for each
vertexx, we will not take more thanN(x) edges connected tox. This problem is a

13



generalization of the maximal matching problem, since the simple matching problem
is a special case whereN(x) = 1 for all the vertices.

5

2

1 3

1

2

Figure 3: Generalized matching of the free graph.

Figure 3 illustrates the generalized matching problem of the free graph. Each vertex
x, is associated with a number which is itsN(x). We want to take as many edges from
the free graph as long as the number of edges that are connected to a vertexx, does not
exceedN(x). With this restriction we do not loose admissibility.

This generalized matching problem can be solved as a flow problem. We connect
the source vertex S to each of the vertices ofA′, with each edge that connects S tox
having a capacity ofN(x). Each of the edges of the bipartite free graph (edges from
A′ to B′) will have a capacity of one. Then, we connect each of the free vertices from
B′ to the target vertex T. The capacity of an edge from y inB′ to T will be N(y). Now
we are looking for a maximal flow from S to T. The size of this flow is the maximum
of the generalized matching which can be added to theh2 heuristic without losing
admissibility. The formula forf3 will therefore be

f3(k) = g(k) + h2(k) + h3(k)

where the calculation off3(k) is performed as follows:

1. CalculateNA for each of the free vertices.

2. Sort the free vertices in a decreasing order ofNA

3. Construct the free graph, i.e., the setsA′ andB′ and the edges between them.

4. Calculateh2 for each of the free vertices.

5. Identify the swappable vertices and for each vertexx in the free graph calculate
N(x).

6. calculateh3 by solving the generalized matching problem for the free graph such
that no vertexx will be connected to more thanN(x) neighbors.

Instead of optimally solving the generalized matching problem we can compromise
on a brute force technique that is efficient but does not necessarily find the optimal
matching. This technique loops on all the edges. When reaching an edge(x, y), if both
N(x) > 0 andN(y) > 0 then it adds this edge to the overall heuristic and decreases
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Algorithm Nodes/second
f0 2,412,132
f1 1,280,940
f2 445,553
f3 194,191

Table 2: Nodes per second for graphs of size 50 with an average degree of 8.

bothN(x) andN(y) by one. This method does not guarantee an optimal set of edges
and there might be a larger set of edges which satisfies the constraints. Nevertheless,
in the experiments that we will present below we used this brute force technique since
it turned out to be more cost effective than finding the optimal set of edges.

3.5.1 Computational complexity off3

Here in addition to the work off2, we need to keep the two swappable nodes and the
N(x) value for each of thef free vertices. Note that initially in the root node, theN(x)
value is set to 0 for all the free vertices.

Since inf2 we already spotted the cut in the sorted list, then it takes a constant
time, denoted byc31, to spot the two swappable vertices as they are adjacent to each
other from the two sides of the cut. Since the swappable vertices have changed, we
also need to loop over all the free vertices and change theirN(x) value at a constant
time denoted byc32 for each free vertex.

We then need to solve the generalized matching problem. As described above, we
loop over all the edges of the free graph at a constant time ofc33 per edge. We define
dr′ to be the average number of neighboring vertices (for a free vertex) that are located
in the other part of the bipartite free graph. Therefore the number of edges in the free
graph isr · dr′ . Thus the complexity forf3 is:

T (f3) = T (f2) + 2× (c31 + c32 · r + c33 · r · dr′ = O(r · dr′)

Here, in the worst caser = O(n) anddr′ = O(d) and in this caseT (f3) = O(n·d).

3.6 Computational effort in practice

We have shown that the computational overhead complexity increases as the heuristics
become more complicated. Table 2 shows the number of nodes per second for each of
the algorithms on graphs of size 50 with an average degree of 83. The search algorithm
was DFBnB as described below. As could be expected, the constant time per node
increases as the heuristic function is more complicated. The nodes per second rate
decreases by a factor of around two for each heuristic in the series. We have observed
that these nodes per second rates are rather stable and do not significantly change for all
sizes and average degrees of graphs. However, as will be shown below, with the better

3The reason for choosing 8 here and later on, is because 8 is the smallest average degree where DFBnB
was faster than IDA* for all the heuristics and all sizes of the graph.
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heuristics the overall number of generated nodes decrease by a larger factor yielding a
significant reduction in overall time needed for solving a given problem.

3.7 Generalizing to weighted graphs.

All our heuristics can be simply generalized to weighted graphs. We often made cal-
culations with a number that corresponds to the number of edges in a given set. In a
weighted graph we perform exactly the same calculations but use the sum of costs of
the relevant edges instead of the number of edges. Apart from this adaptation, all our
algorithms remain exactly the same.

In this way, for example, we defined(x,A) =
∑

i w(ei), wherex is a vertex,A is
a set of vertices (that are not free) andei is an edge connectingx to any vertex inA. In
the same manner we defineNA(x), Nx and so on.

4 The search algorithms

Now that we have defined the search tree and the heuristic functions we should describe
the search algorithms used. Basically, we used two known search algorithms. The first
algorithm is Iterative-deepening A* (IDA*) [24] which is a linear space version of
A*. The other algorithm used is Depth-First Branch and Bound (DFBnB) [40]. Both
algorithms were described in section 1. Note again that DFBnB is very effective when
the depth of the solution in the search tree is known in advance. This is the case with
the search tree provided above for GPP.

4.1 Enhancements to the search process

We implemented the following enhancements into the search in order to obtain a speedup.
These enhancements are not directly related to GPP and might be effective in other do-
mains as well.

4.1.1 Ordering the vertices of the graph

The main testbed for our algorithms were random graphs constructed as follows. First,
we determine the values for the number of vertices in the graph,n, and the average
degree,b. We then build an empty graph withn vertices. Then each edge is indepen-
dently added to the graph with a probability ofb/n. Therefore the graph obtained has
an average degree ofb but with some variance. Since the degree of vertices of the the
graph is not uniform then before starting the search process we first sort the vertices
of the graph by decreasing order of their degrees. In this manner, vertices with many
neighbors will be treated sooner. Since these vertices have more edges connected to
them they add more edges crossing the partial solution. The heuristic function in this
case should also be greater and more accurate. We have found that this simple en-
hancement may speed the search process by a factor of more than ten in many cases.
This idea is similar to the well knownmost constraint variablestrategy widely used in
constraint satisfaction problems.
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4.1.2 Calculating related heuristics

Another improvement concerns the heuristic functions and can be applied whenever a
more complicated heuristic is calculated by first calculating a simpler heuristic. This
is a general idea and can also be applied to game tree searches. Indeed, this idea has
been implemented in chess programs for many years, e.g., in Slate’s CHESS 4.0 and
in the Deep Blue program [17]. It works as follows. When generating a new node,
both IDA* and DFBnB need to decide whether to expand that node or to prune it by
checking whether the new node exceeds the current threshold. Instead of computing
the complicated heuristic and then checking to see if a node should be expanded or
pruned we should first check if the simpler heuristic already exceeds the threshold for
pruning. If it does, we can prune the node without computing any further heuristics,
which is the expensive part of the search. In our case of the GPP heuristics,h3 is an
addition toh2. When usingh3, we can first calculateh2. If for a given node,h2 already
exceeds the threshold, there is no need to calculateh3 for that node. While applying
this idea does not decrease the number of generated nodes it does decrease the time per
node for many nodes. Applying this enhancement to GPP reduced the average constant
time per node by more than 20% in many cases.

4.1.3 Node ordering of the search tree

A known enhancement to DFBnB is to order the descendants of a node by increasing
order of their cost value and to visit them in this order. This method helps the search
to first explore a subtree whose root seems to be more promising than its siblings.
Nevertheless, this ordering of the nodes need not to be according to the same cost
function that the search uses. We can take any heuristic to order these nodes. In fact,
we have observed that the most cost effective combination we obtained was usingh3 for
the heuristic of a node but ordering the descendants of a node withh1. An explanation
for using a simpler heuristic for the ordering of the nodes is that we want a very fast
method for ordering these nodes because some of these nodes (which appear later in the
order) will not be visited by the search process as DFBnB will prune them. Thus, we
want to avoid spending time on these nodes. Ordering a node with a simple heuristic
seems good enough to recognize such nodes. In all the experiments below we usedh1

to order the descendants of a node in the search tree for all the search algorithms except
for f0.

5 Experimental results

The first sets of experiments below were conducted on a 500MHZ pentium III PC. At
first we experimented with graphs with 50 vertices and average degrees of 2, 4, ...,
20. For each type of graph we generated 30 random graphs and all the data numbers
presented below are the average of these 30 instances.
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Figure 4: The optimal cut for graphs of size 50.

5.1 Graphs of size 50

Figure 4 illustrates the average size of the optimal partition for graphs of size 50 with
different average degrees. The size of the optimal solution tends to increase linearly
when increasing the average degree.

0.01

0.1

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

T
im

e 
in

 s
ec

on
ds

.

The average degree

Overall time for the diffenret algorithms for graphs of size 50

F0
F1
F2
F3

Figure 5: Time in seconds on graphs of size 50. DFBnB used.

Figure 5 shows the overall time of the different cost functions on graphs with 50
vertices. Each curve corresponds to a different cost function where each point is an
average of 30 different graphs of that size and degree. The search in this figure was
performed by DFBnB. The figure clearly shows that using a more complex heuristic
function results in a much better overall time. The improvement factor between two
succeeding algorithms is around 10.

Table 3 focuses on two points of this data, namely, on graphs with an average
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Average degree Alg Solution Nodes Seconds
6 f0 36.90 53,161,224.20 1,836.04
6 f1 36.90 18,923,257.97 11.76
6 f2 36.90 655,027.73 1.47
6 f3 36.90 44,404.33 0.22
20 f1 184.80 13,664,811,427.40 20,590.75
20 f2 184.80 342,200,788.97 1,139.51
20 f3 184.80 33,850,497.73 269.16

Table 3: Nodes visited and time elapsed.
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Figure 6: Comparing IDA* to DFBnB

degree of 6 and 20. We can see that the difference between the two extreme cases,f0

andf3, for graphs with a degree of 6 is almost 5 orders of magnitude in the number
of generated nodes and 4 orders for the overall time. While a simple heuristic function
based onf0 needs about half an hour to solve such a problem, a complicated heuristic
based onf3 solves it in a fraction of a second. With a dense graph this difference
becomes even greater and if we comparef1 to f3 we see that at an average degree of
6, f3 outperformsf1 by a factor of 50 in the overall time while for an average degree
of 20 the improvement factor is more than 100.

Fig. 6 compares DFBnB to IDA* forf0, f1 andf3. The figure show that at an
average degree of 4 and smaller, IDA* outperforms DFBnB while for larger degrees
DFBnB is much better. The explanation for that is that with 50 vertices in the graph,
the search tree is fixed withO(250) nodes. Each node is given a heuristic value of the
best possible cut associated with it. With larger degrees, the optimal cut is larger and
therefore the number of distinct values in the search tree is larger. This number directly
affects the number of iterations performed by IDA*. With more different distinct values
there are more iterations of IDA* and many nodes are generated more than once. This
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Size Cut f1:seconds f2:seconds f3:seconds
20 27.07 0.04 0.02 0.01
30 34.67 0.15 0.04 0.03
40 47.07 3.89 0.59 0.15
50 54.43 80.88 7.53 1.06
60 63.13 1,482.14 59.70 4.87
70 69.87 30.922.20 1,085.62 55.10
80 83.59 502,238.58 4741.89 119.66

Table 4: Graphs with average degree of 8.

phenomenon does not seem to affect DFBnB in the same manner and therefore, in
graphs with high average degree DFBnB outperforms IDA*. For example, for a graph
with an average degree of 2 and an optimal cut of 4, IDA* using heuristicf3 has 5
iterations with thresholds increasing from 0 to 4. On the other hand, DFBnB on the
same graph first found a solution of 31 and then improved it until it found a solution
of 4. If we can associate each improvement with an iteration, then DFBnB performs
27 iterations for that graph. However, for a graph with an average degree of 8 and an
optimal cut of 51, IDA* performed 52 iterations while DFBnB reduced its solutions
from 91 to 51 with only 41 iterations. A thorough analysis about the relation between
the performance of IDA* and the different distinct values was presented in [30]. Since
DFBnB is better on this domain then for the rest of the paper we concentrate on results
obtained by this algorithm and omit results obtained by IDA*.

5.2 Graphs with a degree of 8

We conducted another set of experiments. In this set the average degree of the graphs
was always set to 8 but the size of the graph varied from 20 to 80. The search was done
with DFBnB. Again, each number in the following data is an average over 30 different
graphs with the same size and average degree.

Table 4 shows data for that set of experiments. It also shows that the optimal cut
grows linearly with the size of the graph while the overall time grows exponentially.
We only report results for DFBnB which usedf1, f2 andf3. We can see that as the
graphs grow larger the gap between these algorithms also grows. While for graphs of
size 20,f3 is twice as fast asf1, for graphs of size 80 the improvement factor is almost
1000.

5.3 Graphs of size 100

Another domain studied was graphs of size 100. Here we only solved five graphs for
each average degree and only with our best algorithmf3. The results are shown in
Table 5. We have also performed many experiments on other sizes of graphs and all
the results showed the same tendency namely that a large speedup is obtained by the
more complicated heuristic functions.
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Average degree Cut f3:Nodes f3:seconds
2 5.57 170,103.70 0.82
4 30.97 5,333,677.50 51.85
6 66.63 122,199,646.13 1,542.94
8 106.30 2,004,165,640.23 29,214.19
10 144.75 13,464,048,386.75 227,607.09

Table 5: Graph with size 100.

5.4 DFBnB as an anytime algorithm

A DFBnB search can be used as an anytime algorithm and return the best solution
found so far. We have performed such experiments on a variety of graphs and found
that bound for the DFBnB search tends to converge very fast. This is a known phe-
nomenon in computer science where most of the effort of optimal algorithms is spent
in improving a very good solution or in verifying that a given solution is optimal. This
is especially true in our case where we try to optimally partition very small graphs
compared to the graphs that were sub-optimally partitioned by other approaches in the
literature and in the industry.
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Figure 7: DFBnB as an anytime algorithm

Figure 7 presents the the DFBnB bound versus time elapsed for a graph of size
100 with an average degree of 8 (forth line of Table 5). The number of seconds for
solving this version is 29,214. The initial bound was 152 and the table shows that the
bound converges very fast to the optimal partition of 106. Note that after 30% of the
running time (10,000 seconds) we already have an optimal solution in hand, but we do
not know this for sure until the search verifies that a better solution does not exist and
halts.

We have also tried to combine our global search with some of the other subopti-
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mal algorithms mentioned above. We first run the suboptimal algorithm and receive a
suboptimal solution from it. We then activate our DFBnB search with that solution as
the initial threshold in order to either improve that solution or verify that it is an opti-
mal solution. Doing this did not speedup the search significantly as the bound tends to
converge very fast as shown in Figure 7.

6 Experimental comparison to other optimal GPP solvers.

As discussed in section 2.1, a number of optimal GPP solvers were developed. The
best ones are the algorithms developed by Karisch et al. [21] and by Sensen [38]. In
this section we optimally solve benchmark graphs that have been solved by these two
approaches.

Since the time complexity of all the algorithms in question is exponential the only
way to compare between them is to compare their actual running time on given problem
instances. Indeed, Sensen [38] compared his work with that of Karisch et al. [21] by
measuring the exact running time. We take the same approach and compare the running
time of our algorithm to the running time presented by these works.

Comparing actual time has many flaws. First, results are affected by the specific
architecture of the machine. Karisch et al. [21] performed their experiments on an
HP 9000/735 machine, Sensen [38] performed his runs on a Sun Enterprise 450 Model
4400 with Sun UltraSPARC-II 400MHz processor while we performed our experi-
ments below on a Pentium 4 PC with a 1.6MHz processor. Also, programs are affected
by the efficiency of the exact implementation. Thus, one should be careful when com-
paring the exact actual times reported by all three approaches. If the reported times
are within the same range, deriving accurate conclusion out of this data with regards to
which is the fastest approach is misleading. However, if the times reported are in dif-
ferent ranges, for example, if one approach solves a problem in tenth of a second while
the other approach needs a number of minutes then concluding that the first approach
is faster is reliable.

To normalize our results with those of Karisch et al. [21] and Sensen [38] we ran a
small sample of our experiments on a HP 9000/735 machine and on a Sun UltraSPARC-
II 400MHz (the same machine used by Karisch et al. and by Sensen respectively). We
followed the normalizing techniques provided in the TSP DIMACS challenges [1].
We found that our results obtained on these machine were slower by 30% and 20%
respectively. The results provided by Sensen [38] are not normalized with those of
Karisch et al.[21]. Thus, to be consistent with these works (in the fact that results are
not normalized) we decided to report our exact times in the tables below. However, one
should multiple our time reports by factor of 1.42 to normalize our results with those
of Karisch et al. and by 1.25 to normalize our results with those of Sensen.

Note that these small factors are insignificant as the results below show a large
difference of up to three orders of magnitude between the running times of the dif-
ferent algorithms. We can assume that using other modern machines and/or other im-
plementations would not change these differences significantly. Thus, we believe the
comparison below has meaning.

Solutions to a number of classes of graphs were reported by [21, 38]. We have
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Graph N Density Cut Our time Sensen Karisch et al.
DB5 32 12 10 0 0 6
DB6 64 6 18 8 8 07:49
DB7 128 3 30 14:32:12 4:17 23:18:29
DB8 256 85:15:10
SE6 64 8 9 0.8 3
SE7 128 16 15:12:10 28

Star 50 50 25 0 1
Grid 5x10 50 5 0.02 1
Rand 0.1 60 10 35 0.4 10
Rand 0.05 60 5 13 0.02 12

Table 6: De-Bruijn, Shuffle exchange, Star, Grid and random graphs.

solved the same classes of graphs and describe them in the same notation. The classes
of graphs are as follows:

• The first class includes De-Bruijn graphs. See [21] for a comprehensive descrip-
tion and discussion of these graphs. We denote De-Bruijn graphs with dimension
d asDBd.

• Shuffle exchange graph with dimensiond are denotedSEd.

• Simple star graph with 50 vertices. It is denotedStar50.

• Two dimension grid graph of 5x10 is referred to asGrid5x10.

• Random graphs with 60 vertices. Each possible edge exists in the graph with a
probability of 0.1 and 0.05. We denote these graphs byRand0.1 andRand0.05
respectively.

• In [2] a library of graphs was created and was referred to as BCR-library in
[21, 38]. We have also optimally solved these graphs. The first set of graphs from
the BCR-library are randomly generated instances where the degree of nodes of
the graph was first fixed. Then edges belonging to the graph received weight
uniformly drawn from [1,10]. These graphs are denoted in the BCR-library by
v.d, t.d, q.d, c.d ands.d whered is the fixed degree.

• Toroidal grid instances from the BCR-library. They are denoted byh×kt where
they haven = hk vertices andm = 2hk edges.

• Equicut of mixed grid instances from the BCR-library. They are referred to as
h× km. These are dense graphs where edges of a planar grid got weights which
were uniformly distributed from [1,100] and all other edges were uniformly dis-
tributed from [1,10].
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Graph N Density Cut Our time Sensen Karisch et al.

v0.90 20 10 21 0 1
v0.00 20 100 401 0.02 1
t0.90 30 10 24 0 1
t0.50 30 50 397 0.09 17
t0.00 30 100 900 1.13 3
q0.90 40 10 63 0 4
q0.80 40 20 199 0 01:09
q0.30 40 70 1056 19 01:02
q0.20 40 80 1238 43 25
q0.10 40 90 1425 01:45 41
q0.00 40 100 1606 02:52 4
c0.90 50 10 122 0 10
c0.80 50 20 368 1.5 03:04
c0.70 50 30 603 21 04:02
c0.30 50 70 1658 31:36 02:44
c0.10 50 90 2226 03:16:00 02:39
c6.90 56 10 177 3.16 30
c4.90 54 10 160 0.16 01:39
c8.90 58 10 226 2.45 08:46
c0.00 50 100 2520 08:12:02 02:20
c2.90 50 10 123 0 12
s0.90 60 10 238 1.28 04:57

Table 7: Random graphs from the BCR library.

All our results below were obtained by DFBnB with the most powerful heuristic
that we have, namely withf3. The experiments were conducted on a Pentium 4, 1.6
MHz, with 512MB of main memory.

Results are presented in Tables 6, 7 and 8. The columns are ordered as follows:

• The name of the graph,

• The number of verticesN ,

• The average degree of the graph,

• The optimal GPP solution.

• The time inhh:mm:ss.xx that it took our program to solve the graph. Note that
digits after the decimal pointxxcorrespond to fractions of a second.

• The time reported by Sensen [38].

• The time reported by Karisch et al. [21].

24



Graph N Density Cut Our time Sensen Karisch et al.

4x5t 20 21 28 0 1
6x5t 30 14 31 0 3
8x5t 40 10 33 0 6
21x2t 42 10 9 0 5
23x2t 46 9 9 0 02:05
4x12t 48 9 24 0 17
10x6t 60 7 42 0 05:50
5x10t 50 8 33 0 6
2x10m 20 100 118 0 1
6x5m 30 100 270 0.14 1
2x17m 34 100 316 0.77 29
10x4m 40 100 436 5.2 2
5x10m 50 100 670 10:00 2
13x4m 52 100 721 18:25 34
4x13m 52 100 721 16:03 34
9x6m 54 100 792 47:00 12

Table 8: Toroidal and mixed grid instances from the BCR-library.

These tables show that for each of the methods compared, there exists a graph
where it was significantly faster than the other approaches. The values inbold face
correspond to cases where our results were the best.

Our approach seems to perform best for graphs with small number of vertices or
for large graphs with low average degree. For such graphs, while the other approaches
usually take a number of seconds, we solve them in a fraction of a second, which is up
to three orders of magnitude faster. In particular, we outperformed the results reported
by Sensen [38] forStar50, Grid5x10, Rand0.1 , Rand0.05 andSE6. See Table 6.
While we can meet his results forDB5 andDB6 we were behind forDB7. Note that
Sensen also solvedDB8. We outperformed Karisch et al. for all De-Bruijn graphs.

The results from Table 7 show that we have outperformed Karisch et al. for all the
graphs of size 30 and smaller or for graphs of size 40 with average degreee lower than
70%. For graphs of size 50 and higher our results outperformed those of Karisch et al.
for graphs with relatively low average degree.

The same phenomenon exists for the grid graphs of Table 8. Results from our
approach outperformed those of Karisch et al. for any small sized graph. Again, for
larger graphs our results outperformed those of Karisch et al. when the graphs had low
average degrees.

We can conclude from these experiments that different attributes of the graphs
cause a different behavior of the different algorithm. In general, it would be bene-
ficial to use our approach for any small graph or for larger graphs with low average
degrees. In these classes of graphs it seems that our pruning technique is the most
effective among the three algorithms.
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7 Conclusions and future work.

We have shown a number of admissible heuristics that optimally solve the graph par-
titioning problem. We have managed to optimally partition random graphs of sizes up
to 128 vertices with a search space of sizeO(2128). We have shown experimentally
that our approach is a strong competitor to the best existing optimal GPP solvers and
identified the cases where our algorithm performs best.

In general, it seems that introducing new domain independent search algorithms by
suggesting new methods for expanding nodes does not lead to a large reduction in the
search effort. Thus, more accurate heuristic functions might be the method of choice
for significantly reducing the search effort. While our heuristics are somewhat tailored
to GPP they implement a general method of finding better heuristics by looking deeper
into interactions and conflicts between unsolved subgoals. This seems to pay off at the
end with a much better overall time for obtaining a solution for GPP. Our best heuristic
seems to outperform the simple one by a couple of orders of magnitude.

We believe that this basic idea of looking into interactions and conflicts between
subgoals is general and might be applicable for other domains as well. The pattern
database systems that were discussed above are one way of implementing this idea. In
fact, we developed our current heuristics for the GPP while trying to implement the
pattern database idea for this domain. For more details about the evolutions of our
heuristics from the pattern databases methods see [10].

Another contribution of our work is that we have shown how to apply search tech-
niques from artificial intelligence to successfully solve a problem from another area
of computer science. While the notion of developing more accurate heuristics proved
powerful, it is usually used only in artificial intelligence problems such as games and
puzzles. We have demonstrated that this technique is more general and that it is appli-
cable in solving problems from other areas of computer science that can be formulated
as search problems.

Our approach cannot be directly compared to other GPP algorithms that, unlike
ours, are designed to return suboptimal solutions. Naturally, since GPP is NP-hard,
we can only find optimal solutions to problems of relatively small size. However, our
experimental results show that our approach is indeed competitive to the best existing
optimal GPP solvers. We showed that on a large number of graphs the running time of
our algorithm outperformed previous approaches by a number of orders of magnitude.

An interesting idea would be to combine our algorithm with the work from [34]
which used Lagrangian relaxation. While their algorithm does not guarantee a feasible
optimal solution, it does give the size of the optimal solution rather quickly. Once we
know the size of the optimal solution we can run our algorithm with that size as a bound
and stop as soon as the first optimal solution is found. In this search both IDA* and
DFBnB converge and only develop nodes whose cost value is smaller or equal to the
size of the expected optimal solution. No node will be visited more than once, and no
node with a cost that is greater than the optimal solution will be visited.

This work can be taken further in the following directions:

• We have only solved the GPP problem when a partitioning to two groups is
needed. Future work can generalize our approach to the m-way partitioning.
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• We have presented a sequence of heuristics. Future work can expand this se-
quence and develop more complicated heuristics for this problem.
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