1. Feldman, Y., Kligerman, Y., Etsion, I., and Haber, S. 2005. The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces. ASME, J. Tribol., 128(2), 345-350.
2. Feldman, Y., Kligerman, Y., Etsion, I., 2006. A Hydrostatic Laser Surface Textured Gas Seal. Tribol. Lett., 22(1), 21-28.
3. Feldman, Y., Kligerman, Y., Etsion, I., 2007. Stiffness and efficiency optimization of a hydrostatic laser surface textured gas seal. ASME, J. Tribol., 129(2), 407-410.
4. Feldman, Yu., and Gelfgat, A., Yu., 2009. On pressure-velocity coupled time-integration of incompressible Navier-Stokes equations using direct inversion of Stokes operator or accelerated multigrid technique, Computers & Structures, 87, 710-720.
5. Feldman, Yu., and Gelfgat, A.Yu., 2010. Oscillatory instability of a 3D lid-driven flow in a cube. Physics of Fluids, 22, 093602.
6. Feldman, Yu., and Gelfgat, A.Yu., 2011. From multi- to single-grid CFD on massively parallel computers: numerical experiments on lid-driven flow in a cube using pressure-velocity coupled formulation. Computers & Fluids, 46, 218-223.
7. Liberzon, A., Feldman, Yu., and Gelfgat, A., Yu., 2011. Experimental observation of the steady –oscillatory transition in a cubic lid-driven cavity. Physics of Fluids, 23, 084106.
8. Feldman, Yu., Colonius T., Pauken M., Hall J.L., Jones J.A., 2012. Simulation and cryogenic experiments of natural convection for the Titan Montgolfiere. AIAA Journal, 50(11), 2483-2491.
9. Feldman Yu., Colonius T., 2013. On a transitional and turbulent natural convection in spherical shells, Int. J. Heat Mass Transfer, 64, 514-525.
10. Gelfgat, A.,Yu., and Feldman, Yu., 2014. Reply to a letter of A. Povitsky regarding benchmark problem of 3D flow in a cubic cavity driven by a diagonally moving lid, Computers & Fluids, 92, 224.
11. Feldman, Yu., 2015. Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity, Theor. Computat. Fluid Mech., 29(4), 245-261
12. Gilberg, Y., Feldman, Yu., 2015. On laminar natural convection inside multi-layered spherical shells, Int. J. Heat Mass Transfer, 91, 908-921.
13. Feldman, Yu., Gulberg, Y., 2016. An extension of the immersed boundary method based on the distributed Lagrange multiplier approach, J. Comput. Phys., 322, 248-266.
14. Gulberg, Y., Feldman, Yu., 2016. Flow control through use of heterogeneous porous media: Smart passive thermo-insulating materials, Int. J. Therm. Scien., 110, 369-382.
15. Idan, S., Feldman, Yu., 2017. “Smart” passive thermal insulation of confined natural convection heat transfer: An application to hollow construction blocks, Appl. Therm. Eng., 124, 1328-1342.
16. Feldman, Yu., 2018. “Oscillatory instability of 2D natural convection flow in a square enclosure with a tandem of vertically aligned cylinders”, Fluid Dyn. Res., 50(5), 051410.
17. Feldman, Yu., 2018. Semi-implicit direct forcing immersed boundary method for incompressible viscous thermal flow problems: a Schur complement approach, Int. J. Heat Mass Transfer, 127, 1267-1283.
18. Spizzichino A., Goldring, S., Feldman, Yu., 2019. The immersed boundary method: Application to two-phase immiscible flows, Commun. Computat. Phys., 25(1), 107-134.