Dr. Yuri Feldman

Dr. Yuri Feldman Profile

Senior lecturer
Phd 2011

Department : Department of Mechanical Engineering
Room : 323
בנין המחלקה להנדסת מכונות ע"ש סורף - 55
Phone : 972-8-6477095
Email : yurifeld@bgu.ac.il
Office Hours :  


  • 2001: B.Sc., Faculty of Mechanical Engineering, Technion - Israel Institute of Technology.
  • 2006: M.Sc., Faculty of Mechanical Engineering, Technion - Israel Institute of Technology.
    Thesis: "Analysis of Gas Lubrication with Textured Surfaces".
    Supervisors: I. Etsion, Y. Kligerman.
  • 2011 : Ph.D., Tel Aviv University, Department of Fluid Mechanics and Heat Transfer.
    Thesis: "Direct Numerical Simulations of Transitions and Supercritical Regimes in Confined Three- Dimensional Recirculating Flows".
    Supervisor: A. Gelfgat.

Research Interests

  • Computational fluid dynamics, parallel and high performance scientific computing of laminar (DNS) and turbulent (LES, RANS) flows. Immersed boundary method. Fluid-structure interactions. Flow control. Linear stability analysis of confined shear and thermally driven flows. Pressure-velocity coupled CFD. Multigrid approach. Micro-hydrodynamics and lubrication.

Publications and funding summary / representative publications and grants

1.   Feldman, Y., Kligerman, Y., Etsion, I., and Haber, S. 2005. The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces. ASME,  J. Tribol., 128(2), 345-350.

2.    Feldman, Y., Kligerman, Y., Etsion, I., 2006. A Hydrostatic Laser Surface Textured Gas Seal. Tribol. Lett., 22(1), 21-28.

3.   Feldman, Y., Kligerman, Y., Etsion, I., 2007. Stiffness and efficiency optimization of a hydrostatic laser surface textured gas seal. ASME, J. Tribol., 129(2), 407-410.

4.    Feldman,  Yu.,  and  Gelfgat,  A.,  Yu.,  2009.  On  pressure-velocity  coupled  time-integration  of incompressible   Navier-Stokes   equations   using   direct   inversion   of   Stokes   operator   or accelerated multigrid technique, Computers & Structures, 87, 710-720.

5.    Feldman, Yu., and Gelfgat, A.Yu., 2010. Oscillatory instability of a 3D lid-driven flow in a cube. Physics of Fluids, 22, 093602.

6.   Feldman, Yu., and Gelfgat, A.Yu., 2011. From multi- to single-grid CFD on massively parallel computers: numerical experiments on lid-driven flow in a cube using pressure-velocity coupled formulation. Computers & Fluids, 46, 218-223.

7.     Liberzon, A., Feldman, Yu., and Gelfgat, A., Yu., 2011. Experimental observation of the steady –oscillatory transition in a cubic lid-driven cavity. Physics of Fluids, 23, 084106.

8.    Feldman, Yu., Colonius T., Pauken M., Hall J.L., Jones J.A., 2012. Simulation and cryogenic experiments of natural convection for the Titan Montgolfiere. AIAA Journal, 50(11), 2483-2491.

9.    Feldman Yu., Colonius T., 2013. On a transitional and turbulent natural convection in spherical shells,  Int. J. Heat Mass Transfer, 64, 514-525.

10. Gelfgat, A.,Yu., and Feldman, Yu., 2014. Reply to a letter of A. Povitsky regarding benchmark  problem of 3D flow in a cubic cavity driven by a diagonally moving lid,  Computers & Fluids, 92, 224.

11. Feldman, Yu., 2015. Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity, Theor. Computat. Fluid Mech., 29(4), 245-261

12. Gilberg, Y., Feldman, Yu., 2015. On laminar natural convection inside multi-layered spherical shells, Int. J. Heat Mass Transfer, 91, 908-921.

13. Feldman, Yu., Gulberg, Y., 2016. An extension of the immersed boundary method based on the  distributed Lagrange multiplier approach, J. Comput. Phys., 322, 248-266.

14. Gulberg, Y., Feldman, Yu., 2016. Flow control through use of heterogeneous porous media: Smart passive thermo-insulating materials, Int. J. Therm. Scien., 110, 369-382.

15. Idan, S., Feldman, Yu., 2017. “Smart” passive thermal insulation of confined natural convection heat transfer: An application to hollow construction blocks, Appl. Therm. Eng., 124, 1328-1342.  

16. Feldman, Yu., 2018. “Oscillatory instability of 2D natural convection flow in a square enclosure with a tandem of vertically aligned cylinders”, Fluid Dyn. Res., 50(5), 051410.

17. Feldman, Yu., 2018. Semi-implicit direct forcing immersed boundary method for incompressible viscous thermal flow problems: a Schur complement approach, Int. J. Heat Mass Transfer, 127, 1267-1283. 

18. Spizzichino A., Goldring, S., Feldman, Yu., 2019. The immersed boundary method: Application to two-phase immiscible flows, Commun. Computat. Phys., 25(1), 107-134.



Looking for expertise / project

Looking for  excellent M.Sc. and Ph.D students  for challenging projects in the field of Computational Fluid Dynamics and Heat Transfer

Additional links