
European Journal of Mechanics B/Fluids 27 (2008) 131–149

Particle grouping in oscillating flows
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Abstract

An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving
with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting
cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial
location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave
frame of reference are equal to zero), xlim. This is followed by an analysis of the dynamics of non-Stokesian particles. In all
cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of
trajectories are predicted when particles approach xlim: the trajectories describing the monotonic approach to xlim, the trajectories
describing the approach to xlim with oscillations and trajectories repelled from xlim. These are identified with stable nodes, stable
foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac’s criterion,
it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the
trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Spray; Stokesian flow; Clustering

1. Introduction

The problem of calculating droplet and particle trajectories in various flow structures has been discussed in numer-
ous papers (e.g. [1–3] and the references therein). This problem is challenging from the point of view of mathematical
analysis and important for various engineering, environmental and medical applications including those related to
modelling of dynamics of atmospheric particles [4,5], modelling of inhaled particles [6], exhaust Diesel particles fil-
tration [7], modelling of sprays in internal combustion engines [8,9] and other applications [10,11]. To understand the
underlying physics of the phenomenon, it is often useful to simplify the problem, while retaining its non-trivial fea-
tures. This approach was adopted in [12]. These authors studied the process of grouping of non-evaporating particles
based on a simple 1D model. The analysis was performed in a stationary frame of reference, and effects of particles
on gas were ignored. Although the assumptions of this model might seem to be too simplistic for direct practical
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engineering applications, they allowed the authors to get a clear picture of the effect of the oscillating gas flow on
droplet grouping. This could potentially complement the results predicted by more advanced DNS and LES models
(e.g. [13]).

The main limitation of the analysis performed by [12] is that it was based on the numerical solution of the equation
of particle motion. Although this approach allowed the authors to establish some new features of particle behaviour
(grouping and non-grouping) many underlying physical properties of this behaviour remained unclear. In this paper,
the analysis by [12] is extended in two main directions. Firstly, we restricted ourselves to the Stokesian approximation
(small Reynolds numbers). In this case, the analysis of the equation of particle motion is performed in some limiting
cases using analytical methods, allowing us to get a much clearer understanding of the physics of the phenomenon.
Results of this analysis are compared with the results of numerical simulation where appropriate. Secondly, the case
of arbitrary particle Reynolds numbers (non-Stokesian flow) is considered. The general properties of the equation of
particle motion are investigated and particle trajectories are calculated numerically. Some properties of these trajec-
tories are compared with those which follow from the simplified theoretical analysis of Stokesian trajectories. The
range of possible applications of the results is the same as discussed in [12].

Basic equations of the model and approximations are presented and discussed in Section 2. In Section 3, analytical
solutions of these equations for small Stokes numbers are shown and discussed. The focus of Section 4 is on converg-
ing and repelling trajectories of particles during the process of their grouping for arbitrary Stokes numbers, provided
that the Stokesian approximation remains valid. In Section 5, some analytical results obtained in Sections 3 and 4 are
compared with the results of numerical analysis of Stokesian trajectories. In Section 6, non-Stokesian particle trajec-
tories are investigated using numerical approach. The properties of these trajectories are related to some analytical
results where appropriate. The main results of the paper are summarised in Section 7.

2. Basic equations and approximations

Let us consider a two-dimensional incompressible flow described by the following velocity field:

v(x, y, t) = (
Va − Vb sin(kx − ωt)

)
ix + (

yVbk cos(kx − ωt)
)
iy (1)

where v(x, y, t) is the dimensional gas flow velocity at a time t at a location (x, y), Va is the dimensional mean flow
velocity, Vb is the dimensional amplitude of the velocity oscillation in the x-direction, k is the wave number and ω is
the angular velocity. Without loss of generality we assume that Va and Vb are positive. The flow, described by Eq. (1),
has a period λ = 2π/k along the x-axis (wave length) and a time period T = 2π/ω. The dimensional phase velocity
of the wave is Vω = ω/k.

The flow described by Eq. (1) satisfies the continuity equation.
For small y, the y-component of the flow velocity can be ignored compared with the x-component and Eq. (1) can

be simplified to:

vg(x, t) = Va − Vb sin(kx − ωt), (2)

where vg(x, t) is the dimensional gas flow velocity at a time t at a location x. Following [12], our further analysis will
be based on Eq. (2). This flow could describe a number of practically important configurations including pulsating
vortex sheets and rings (e.g. [14,15]).

Ignoring the effects of the external (gravity) force, Basset (history) force, the Faxén correction to the viscous force,
the shear induced and Magnus lift forces, the equation for particle dynamics can be presented as [16]:

ρpϑ
dvp(x, t)

dt
= Fd + F i + Fa, (3)

where ρp and ϑ are the particle density and volume respectively, Fd , F i and Fa are viscous drag, inertial and added-
mass forces. F i takes into account the effect of acceleration of the host gas on the particle, while Fa takes into account
the effect of the accelerating particle on the host gas.

Eq. (3) is a simplified version of the general equation derived and discussed in [17].
The general expression for Fd can be presented as [18]:

Fd = 1
CDρg|vg − vp|(vg − vp)πR2

p, (4)

2
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where ρg is gas density, CD is the drag coefficient, depending on the particle Reynolds number

Rep = 2Rpρg|vg − vp|
μg

,

Rp is the particle radius, μg is the gas dynamic viscosity. In the Stokesian limit of small Rep , CD = 24/Rep and the
expression for Fd is simplified to:

Fd = 6πRpμg(vg − vp). (5)

Eq. (5) was derived in the limit Rep � 1, but it can be used in practical applications for Rep � 0.5 and even Rep � 2
[18].

In the Stokesian limit the expressions for F i and Fa for spherical particles were derived in the form [19–22,16]:

F i = ρgϑ
Dvg

Dt
, (6)

Fa = 1

2
ρgϑ

(
Dvg

Dt
− dvp(x, t)

dt

)
, (7)

where the substantial derivative is defined as:

Dvg

Dt
= ∂vg

∂t
+ vg

∂vg

∂x
.

Eqs. (6) and (7) were derived assuming that the particle size is much smaller than the characteristic length scale of
the flow. This can be assumed valid in most of the practical applications mentioned above.

Restricting our analysis to the Stokesian approximation and remembering Eqs. (2), (3), (5), (6) and (7), the nor-
malised equation for particle velocity can be presented as:

dup

dτ
= 1

S̃t
(ug − up) + 3ρg

2ρ0
ub cos(x̃ − τ)[1 − ug], (8)

where ug = vg/Vω, up = vp/Vω, τ = ωt , x̃ = kx,

S̃t = 2ρ0ωR2
p

9μg

, ρ0 = ρp + 1

2
ρg.

In most important practical applications, including medical aerosols, Diesel fuel sprays and Diesel particulate filters
[6–8], ρg � ρp . This allows us to ignore the effects of inertial and added-mass forces, unless S̃t � 1, and simplify
Eq. (8) to

dup

dτ
= 1

St
(ug − up), (9)

where

St = 2ρpωR2
p

9μg

≈ S̃t

is the Stokes number, vg is given by Eq. (2). The generalisation of Eq. (9) to the case of non-Stokesian flow is discussed
in Section 6. Until this section, the validity of the Stokesian approximation will be assumed. The interaction between
particles and the effect of particles on gas are ignored.

The analysis of Eq. (9) is simplified considerably if it is re-written in the frame of reference moving with the phase
velocity of the wave:

xwave = xstationary − Vωt. (10)

The particle velocities in the wave and stationary frames of reference are linked by the following equation:

vp(wave) = vp(stationary) − Vω. (11)
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In view of Eqs. (9), (10) and (11), the particle trajectory in the frame of reference moving with the wave can be
described by the following equation:

dUp

dτ
= 1

St
(Ua − 1 − Ub sinX − Up), (12)

where X is the distance in the moving frame of reference normalised by k−1, Up is the normalised particle velocity
in the same frame of reference, Ua = Va/Vω , Ub = Vb/Vω (cf. the analysis of electron trajectories in plasma waves
as discussed in [23]).

Eq. (12) can be rewritten in an alternative format:

d2X

dτ 2
+ 1

St

dX

dτ
− 1

St
(Ua − 1 − Ub sinX) = 0. (13)

If the contribution of the term

1

St

dX

dτ

in this equation could be ignored then its solution could be presented in terms of elliptical integrals [24]. This approx-
imation is widely used for the analysis of charged particles/plasma wave interactions in collisionless plasma [23]. In
the case of particle interaction with an oscillating flow, however, this approximation seems to be of limited practical
use (viscous forces are the dominant). In the latter case another approximation of small St is expected to be important.
As follows from the definition of St, the condition St � 1 is always satisfied for sufficiently small particles and/or
small ω. Note that this condition should be viewed in connection with the corresponding condition for the Stokesian
flow: Rep = 2ρg|vg − vp|Rp/μg < 2 [18].

Assuming that St � 1, Eq. (13) can be simplified to:

dX

dτ
− Ub(β − sinX) = 0, (14)

where, following [12], we introduced the new parameter β = (Ua − 1)/Ub .
Note that Eq. (14) is the exact equation for the Lagrangian trajectory of ‘fluid particles’ in the flow field given by

Eq. (2). This means that in the zeroth approximation the relative motion of particles and fluid is not taken into account.
Considering the first approximation of the solution of Eq. (13) we assume that:

X = XS + X1, (15)

where XS is the solution of Eq. (14), |X1| � |XS |. Having substituted Eq. (15) into Eq. (13) and keeping only the
linear terms with respect to X1, we obtain the following equation for X1:

dX1

dτ
+ a(τ)X1 = b(τ), (16)

where

a(τ) = cosXs, b(τ ) = −St
d2XS

dτ 2
.

Eq. (16) has a straightforward solution, satisfying the initial condition X1|t=0 = 0:

X1 = 1

exp[∫ τ

0 a(τ ′)dτ ′]

τ∫
0

{
b(τ ′) exp

[ τ ′∫
0

a(τ ′′)dτ ′′
]}

dτ ′. (17)

The form of this solution, however, seems to be rather complicated, without showing any new physics compared with
the general numerical solution. The main focus of our further analysis will be on Eq. (14). The predictions of this
equation will be compared with the numerical solution of Eq. (13) where appropriate.
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3. Analytical solutions for small St

The format of the general solution of Eq. (14) depends on the value of β . If |β| < 1 then this solution can be
presented as:

Ub(τ − τ0) = 1√
1 − β2

ln

∣∣∣∣β tan X
2 − √

1 − β2 − 1

β tan X
2 + √

1 − β2 − 1

∣∣∣∣∣∣∣∣X
X0

, (18)

where X0 = X(τ0).
For |β| = 1 this solution can be written as:

Ub(τ − τ0) = tan

(
π

4
+ βX

2

)
− tan

(
π

4
+ βX0

2

)
. (19)

For |β| > 1 this solution takes the form:

Ub(τ − τ0) = 2√
β2 − 1

arctan

[
β tan X

2 − 1√
β2 − 1

]∣∣∣∣X
X0

. (20)

These solutions can be easily obtained using the substitution u = tan(X/2) [25].
In the limit β → 0 (the mean flow velocity is equal to the wave phase velocity), Eq. (18) is simplified to:

Ub(τ − τ0) = ln

∣∣∣∣tan
X

2

∣∣∣∣ − ln

∣∣∣∣tan
X0

2

∣∣∣∣. (21)

The trajectories of the particles predicted by Eqs. (18)–(21) can be rather complicated. However, some important
properties of these trajectories can be established even without the detailed analysis of the equations.

Let us assume that −1 < β < 1 and focus our analysis on Eq. (18). One can see that for X = Xlim ≡ arcsinβ and
cosXlim > 0:

β tan
X

2
+

√
1 − β2 − 1 = β

1 − cosXlim

sinXlim
+

√
1 − β2 − 1 = 0. (22)

Thus, for X → Xlim and cosXlim > 0 the right-hand side of Eq. (18) becomes infinitely large and positive. This means
that when X approaches Xlim, the time τ is expected to become infinitely large, and both the first and the second
derivative of X are expected to become infinitely small. This could happen only when the particles are grouped in the
vicinity of X = Xlim.

For the same range −1 < β < 1, X = Xlim ≡ arcsinβ and cosXlim < 0:

β tan
X

2
−

√
1 − β2 − 1 = β

1 − cosXlim

sinXlim
−

√
1 − β2 − 1 = 0.

Thus, for X → Xlim and cosXlim < 0 the right-hand side of Eq. (18) approaches −∞. This cannot satisfy Eq. (18)
since the left-hand side of this equation is positive. Hence, the grouping can occur in the vicinity of X = Xlim only
when cosXlim > 0. It is interesting to mention that although this result was obtained for small Stokes numbers, it
remains valid for finite St, provided that Eq. (9) remains valid (see Section 4), and even for non-Stokesian flows (see
Section 6). The solution X = arcsinβ satisfies Eq. (13) when both velocity and acceleration of particles are equal
to zero regardless of the sign of cosXlim. However, position X = Xlim can be reached only when cosXlim > 0. An
alternative proof of this statement is discussed in Section 4. Solution (21) for β = 0 can be considered as a limiting
case of solution (18).

A similar property of the solution for β = 1 and β = −1 follows from Eq. (19) for X → Xlim = (π/2) ± 2πn and
X → Xlim = (−π/2)±2πn respectively, where n = 0,±1,±2, . . . . For β = 1: X can approach Xlim only from below
(X < Xlim) to ensure that the signs of the left and right-hand sides of Eq. (19) are the same. For the same reason, for
β = −1: X can approach Xlim only from above X > Xlim. Both results are consistent with the previous result obtained
from Eq. (18), remembering that arcsin(±1) = ±(π/2)± 2πn. In contrast to the solution for −1 < β < 1, in this case
we have only one value of X over the 2π period which satisfies the equation X = Xlim = arcsinβ , and cosXlim = 0.

Solutions (18), (19) and (21) cannot be used when X0 = Xlim. However, as follows from Eqs. (12) and (13), in
this case we can expect that the velocity and acceleration of particles are equal to zero and the particles will not move
from their initial positions.
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Now let us consider the case when β > 1. In the limit β → ∞, Eq. (20) reduces to a trivial statement that

(Ua − 1)(τ − τ0) = X − X0. (23)

Eq. (23) indicates that the particles are entrained by the flow (they move with the mean velocity of the flow). This is
an expected result. β is large when the amplitude of flow oscillations is small, except in the trivial case when Ua = 1
(particles initially entrained by the flow do not change their positions relative to this flow). Hence the mean velocity
of the flow dominates over the oscillations. For small Stokes numbers, the size of particles is expected to be small.
Hence the contribution of the transitional period, before the particles are fully entrained by the flow, can be ignored.

It can be shown (see Appendix A) that Eq. (20) predicts the following particle average velocity:

Up = 
X


τ
= Ub

√
β2 − 1 = (Ua − 1)

√
1 − 1

β2
. (24)

In the limit when β → ∞, Up = (Ua − 1) as expected.
Eq. (24) shows that the oscillations of the flow produce an additional effective drag on the particle velocity. In the

presence of oscillations, Up is always smaller than in the absence of oscillations. In the limit |β| → 1, Up → 0 and
the grouping phenomenon can be expected, in agreement with Eq. (19).

In the next section, the focus will be on Eq. (13) which will be analysed for |β| � 1 in the vicinity of the points
where X = Xlim.

4. Converging and repelling trajectories

As already mentioned in Section 3, for X = Xlim ≡ arcsinβ , Eq. (13) is satisfied for

d2X

dτ 2
= 0 and

1

St

dX

dτ
= 0.

These conditions mean that the particle position in the frame of reference moving with the wave phase velocity does
not change. In other words, once the particles have reached this position their further movement in this frame of
reference stops. If a number of particles reaches this position they become grouped, using the terminology introduced
by [12]. Since equation X = arcsinβ has a real solution only when |β| � 1, we can expect that grouping is possible
only if the latter inequality is satisfied.

The points satisfying equation X = Xlim = arcsinβ are expected to be grouping points only when particle trajec-
tories in the vicinity of these points converge to Xlim when τ → ∞ (i.e. particle trajectories are converging). In the
opposite case, when the distance between X and Xlim increases when τ → ∞ (i.e. particle trajectories are repelling),
no grouping is expected to take place in the vicinity of Xlim. To establish the type of trajectory expected in the vicinity
of Xlim let us assume that

X = Xlim + X1, (25)

where |X1| � Xlim and |X1| � 1.
Having substituted Eq. (25) into Eq. (13) we obtain, remembering the definition of Xlim and the condition |X1| � 1:

d2X1

dτ 2
+ 1

St

dX1

dτ
+ Ub cosXlim

St
X1 = 0. (26)

The general solution of Eq. (26) can be presented as:

X1 = X101 exp(α1τ) + X102 exp(α2τ), (27)

where

α1,2 = 1

2St

[−1 ± √
1 − 4UbSt cosXlim

]
, (28)

coefficients X101 and X102 are determined from the initial conditions for X1 and its first derivative.
As one can see from Eqs. (27) and (28), for cosXlim > 0, X1 → 0 when τ → ∞, regardless of the values of X101

and X102 and other parameters.
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If 0 < 4UbSt cosXlim < 1 then for sufficiently large times the contribution of the second term in Eq. (27) can be
ignored compared with the contribution of the first term in this equation unless X101 = 0. In this case, an order of
magnitude of the characteristic time during which the grouping is expected to take place can be estimated as:

τgroup = 2St

1 − √
1 − 4UbSt cosXlim

. (29)

For sufficiently small St, Eq. (29) can be simplified to:

τgroup = 1

4Ub cosXlim
. (30)

As follows from Eqs. (29) and (30), τgroup → ∞ when Ub cosXlim → 0. This means that even in the case when the
condition |β| < 1 for grouping is satisfied, the grouping cannot actually take place for any finite interval of time. The
second necessary condition for grouping in this case can be presented as:

2St

1 − √
1 − 4UbSt cosXlim

< τlim, (31)

where τlim is the characteristic time scale of the process. This parameter is determined by the underlying physics of
the process (e.g. the characteristic time of spray penetration (see [26,27]).

If 4UbSt cosXlim > 1 then Eq. (27) can be simplified to:

X1 = exp

[
− τ

2St

]{
X101 exp(ωlimτ i) + X102 exp(−ωlimτ i)

}
, (32)

where

ωlim = 1

2St

√
4UbSt cosXlim − 1,

is the frequency of oscillations of the particle trajectories near X = Xlim, i = √−1.
Note that coefficients X101 and X102 in Eq. (32) are allowed to be complex:

X101 = X101R + iX101I

X102 = X102R + iX102I

}
.

Since the left-hand side of Eq. (32) is real, this equation can be simplified to:

X1 = exp

[
− τ

2St

]{
Xω1 cos(ωlimτ) + Xω2 sin(ωlimτ)

}
, (33)

where the new constants Xω1 and Xω2 are defined as:

Xω1 = X101R + X102R

Xω2 = −X101I + X102I

}
.

In this case, an order of magnitude of the characteristic time during which the grouping is expected to take place can
be estimated as:

τgroup = 2St. (34)

Eq. (34) shows that at small St, the time delay required for grouping to take place can be rather short.
If cosXlim < 0, X1 → ∞ when τ → ∞, except when X102 = 0. This is an unstable solution and no grouping is

expected in this case.
If cosXlim = 0 then Eq. (27) is simplified to:

X1 = X101 exp

[
− τ

St

]
+ X102. (35)

Since the values of X102 for different particles can be different, no grouping is expected to take place in the general
case.

The dependence of the types of various particle trajectories on the values of 4UbSt and Xlim is schematically shown
in Fig. 1 in the form of a γ –Xlim diagram, where γ = (4UbSt)−1. Zone 1 refers to converging trajectories without
oscillations. Zone 2 refers to converging trajectories with oscillations. Zone 3 refers to repelling trajectories.
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Fig. 1. Schematic presentation of Zones 1, 2 and 3 on the γ –Xlim diagram, where γ = (4UbSt)−1. Zone 1 refers to converging trajectories without
oscillations. Zone 2 refers to converging trajectories with oscillations. Zone 3 refers to repelling trajectories.

5. Analytical versus numerical results

In this section the trajectories of particles are analysed based on the numerical solution of Eq. (13) and the analytical
solutions (18)–(20) and (27) for the values of parameters realistic for sprays in Diesel engines [28]. For the numerical
solution, the higher order single point method – the fourth order Runge–Kutta method – was used [29]. We took ω and
k equal to 105 rad/s and 2000 rad/m respectively. These values of ω and k give a wave phase velocity equal to 50 m/s.
In what follows this comparison is performed separately for the case of small Stokes numbers and the trajectories in
the vicinity of X = Xlim for finite Stokes numbers.

5.1. Particle trajectories for small Stokes numbers

Taking Va = 60 m/s and Vb = 20 m/s, we obtain: Ua = 1.2, Ub = 0.4 and β = 0.5. This allows us to use the
solution of Eq. (14) in the form (18). The analysis was performed for the following values of Stokes number: 0.1,
0.4 and 0.9. For realistic Diesel engine conditions this corresponds to particle (droplet) radii Rp equal to 0.5 µm,
1 µm and 1.5 µm respectively, if we take the dynamic viscosity of the ambient gas equal to 3.3 × 10−5 Ns/m2 and
particle (droplet) density equal to 600 kg/m3. Ambient gas density is taken equal to 15.7 kg/m3. For these values of
parameters, Eq. (9) is valid with comfortable margins.

We consider two values of X at τ = 0 (initial conditions): X0 = 0 and X0 = 2. These illustrate two starting points
over the period 2π . In all cases the values of velocity are chosen so that the initial accelerations of droplets are equal
to zero. This is achieved when:

dX

dτ
= Ua − 1 − Ub sinX0. (36)

For the chosen values of Ua and Ub this condition can be rewritten as:

dX

dτ
= 0.2 − 0.4 sinX0.

The plots of X versus τ for these initial conditions are shown in Fig. 2. Solid curves refer to the analytical solution
based on Eq. (18). Dashed and dashed-dotted curves refer to the results of numerical calculations based on Eq. (13)
with St = 0.4 and St = 0.9 respectively. The curves obtained from numerical calculations based on Eq. (13) and
St = 0.1 coincide with those obtained based on the analytical solution (Eq. (18)). The values of X0 are indicated near
the curves. As follows from this figure, the analytical and numerical results are very close even in the case when the
condition St � 1, based on which the analytical solution was obtained, is not satisfied. For all X0 both analytical and
numerical solutions converge to Xlim = arcsinβ = arcsin 0.5 = π/6 ≈ 0.52, in agreement with the result predicted in
Section 3.



S. Sazhin et al. / European Journal of Mechanics B/Fluids 27 (2008) 131–149 139
Fig. 2. The plots of X versus τ for Va = 60 m/s, Vb = 20 m/s,
Vw = 50 m/s (β = 0.5) and two values of X0: 0 and 2. Solid curves
refer to the analytical results obtained based on Eq. (18). Dashed
and dashed-dotted curves refer to the results of numerical calculations
based on Eq. (13) and St = 0.4 and St = 0.9 respectively. The curves
obtained from numerical calculations based on Eq. (13) and St = 0.1
coincide with those obtained using the analytical solution (Eq. (18)).
The values of X0 are indicated near the curves.

Fig. 3. The same as Fig. 2 but for Va = 70 m/s (β = 1). Four values of
X0 are considered: 0, 1, 2 and 4 (indicated near the curves).

The plots similar to those shown in Fig. 2 but for Ua = 1.4 and X0 = 0, 1, 2, 4 are shown in Fig. 3. In this case
β = 1 and the comparison between the results of numerical analysis of Eq. (13) and the analytical solution (19) has
been performed for the same St as in Fig. 2. As one can see from Fig. 3, for X0 = 0 the predictions of numerical and
analytical solutions are very close, even in the case when the condition St � 1 is not satisfied. Both these solutions
predict that X → π/2 ≈ 1.571 when τ → ∞, in agreement with Eq. (19) (see the discussion in Section 3). For X0 = 2
the predictions of numerical and analytical solutions appear to be noticeably different for 8 < τ < 18. However, even
in this case the qualitative behaviours of the curves predicted by these solutions are similar. Both solutions predict
that X → π/2 + 2π ≈ 7.854 when τ → ∞. The plots for X0 = 0 and X0 = 1 converge to X → π/2 ≈ 1.571 when
τ → ∞, while the plots for X0 = 2 and X0 = 4 converge to X → π/2 + 2π ≈ 7.854 when τ → ∞. This agrees with
the results of qualitative analysis of Eq. (19) presented in Section 3: X can approach Xlim from one side only (from
below in our case) to ensure that the sign of the right-hand side of this equation remains positive.

The results of the analysis, similar to the one shown in Figs. 2 and 3 but for Ua = 1.2 and Ub = 0.1, St = 0.9 and
X0 = 0,2, are shown in Fig. 4. In this case β = 2. As follows from Fig. 4, the analytical and numerical results are
very close. In contrast to Figs. 2 and 3, no limiting values for X at τ → ∞ can be seen for both X0. The values of X

oscillate around the inclined line. The tangent of this line shows the average droplet velocity Up , and its value appears
to be close to the one predicted by Eq. (24): Up = (Ua − 1)

√
1 − 1/β2 = 0.2 × 0.866 ≈ 0.173.

5.2. Particle trajectories in the vicinity of X = Xlim

Let us consider the same values of parameters as used in Fig. 2, except that we take St = 40.4. This corresponds
to Rp = 10 µm (a more realistic value of this parameter when compared with the values used in Figs. 2–4). For the
chosen values of velocities and densities the second term on the right-hand side of Eq. (8) can be non-negligible
compared with the first term in the right-hand side of the same equation. Hence, the results of the analysis for this St
will illustrate the qualitative tendency of the processes rather than quantitative characteristics. A comparison of the
particle trajectories predicted by the numerical solution of Eq. (13) and the analytical solution (27) is performed. This
comparison is meaningful only in the case when X is close to Xlim.

For the chosen values of velocities, β = 0.5. This gives us an infinite number of points where X = Xlim. Firstly, our
analysis is focused on Xlim = π/6 = 0.5236. In this case cosXlim > 0 and we expect to have a converging trajectory.
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Fig. 4. The same as Figs. 2 and 3 but for Va = 60 m/s and Vb = 5
m/s (β = 2). The curves obtained from numerical calculations based
on Eq. (13) and St = 0.4 are not shown in the figure. They are very
close to those obtained using the analytical solution (Eq. (18)). Two
values of X0 are considered: 0 and 2 (indicated near the curves).

Fig. 5. The plots describing damped oscillations refer to X versus τ for
Va = 60 m/s, Vb = 20 m/s, Vw = 50 m/s (β = 0.5) (St = 40.4) and
X0 = 0.6. The plots describing monotonically decreasing X refer to the
same values of parameters as above but for St = 0.4. The solid curves
refer to the results of numerical solution of Eq. (13), while filled circles
refer to the results predicted by Eq. (33).

Let us take the initial value of X = X0 = 0.6. In this case the initial deviation of X from Xlim is X10 = X0 − Xlim =
0.0764 � 1 and we expect that Solution (27) is applicable. The second initial condition is taken for the first derivative
of X:

dX

dτ

∣∣∣∣
τ=0

= Uin.

Using the above mentioned values of parameters we obtain:

4UbSt cosXlim = 55.98 > 1.

This means that we can expect an oscillatory converging trajectory described by Eq. (33) with

ωlim = 7.415

2 × 40.4
= 0.092.

Remembering the above described initial conditions we arrive at the following system of equations to determine the
unknown coefficients Xω1 and Xω2:

Xω1 = 0.0764
dX
dτ

= dX1
dτ

= − 1
2St Xω1 + ωlimXω2 = Uin

}
. (37)

Rearranging the second equation we obtain:

Xω2 = 1

2ωlimSt
Xω1 + Uin

ωlim
.

In the case when Uin = 0: Xω2 = 0.01.
The plots of X versus τ , as calculated based on Eqs. (13) and (33) for the above mentioned values of parameters,

are shown in Fig. 5 (oscillating X). The solid curve refers to the results of numerical solution of Eq. (13), while filled
circles refer to the results predicted by Eq. (33). As one can see from this figure, the numerical and analytical results
practically coincide. Both these results predict damped oscillations and slow convergence of X to Xlim = π/6 ≈ 0.52.
This agrees with the results of the analysis presented in Section 4 (see Zone 2 in Fig. 1). The characteristic grouping
time, as estimated from Eq. (34), gives: τgroup ≈ 81. The order of magnitude of this time agrees with the one which
can be obtained from Fig. 5.

At the next stage we consider the same parameter values as above, but take St = 0.4. This corresponds to Rp =
1 µm. In this case, 4UbSt cosXlim = 0.55426 and the general solution of Eq. (26) can be presented in the form (27)
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Fig. 6. The same as Fig. 5 for St = 40.4 but for X0 = 2.7 in the range 0 � τ � 2.

with α1 = −0.4155 and α2 = −2.0845. Taking the same initial conditions as in the previous example, we arrive at the
following system of equations to determine the unknown coefficients X101 and X102 in Eq. (27):

X101 + X102 = 0.0764
α1X101 + α2X102 = Uin

}
. (38)

The solution of this system can be presented as:

X101 = 0.0764α2−Uin
α2−α1

X102 = 0.0764α1−Uin
α1−α2

⎫⎬⎭ . (39)

In the case when Uin = 0, X101 = 0.095 and X102 = −0.019.
The plots of X versus τ , as calculated based on Eqs. (13) and (27) for the above mentioned values of parameters,

are also shown in Fig. 5 (monotonically decreasing X). The solid curve refers to the results of numerical solution of
Eq. (13), while filled circles refer to the results predicted by Eq. (27). As one can see from this figure, the numerical
and analytical results practically coincide, as in the previous case. Both these results predict monotonic convergence
of X to the same Xlim as in the previous case. This agrees with the results of the analysis presented in Section 4
(see Zone 1 in Fig. 1). The characteristic grouping time, as estimated from Eq. (29), gives τgroup ≈ 2.4. The order of
magnitude of this time agrees with the one which can be obtained from Fig. 5.

Next we consider the same parameters as used in Fig. 5 for St = 0.4 except we take Xlim = 5π/6 = 2.618 and
X0 = 2.7. In this case cosXlim < 0 and we expect to have a repelling trajectory. The initial deviation of X from Xlim
is X10 = X0 − Xlim = 0.082 � 1 and we expect that solution (27) is applicable. The second initial condition for the
first derivative of X is taken in the form (36) as in the cases analysed in Section 5.1. Remembering that in this case
St= 0.4, we obtain 4UbSt cosXlim = −0.55426 and the general solution of Eq. (26) can be presented in the form (27)
with α1 = 0.308 and α2 = −2.809. In this case Solution (39) can be rewritten as:

X101 = 0.082α2−Uin
α2−α1

X102 = 0.082α1−Uin
α1−α2

⎫⎬⎭ . (40)

In the case when Uin = 0, X101 = 0.074 and X102 = 0.008.
The plots X versus τ , as calculated based on Eqs. (13) and (27) for the above mentioned values of parameters,

including α1 and α2, are shown in Fig. 6. The solid curve refers to the results of numerical solution of Eq. (13), while
filled circles refer to the results predicted by Eq. (27). As one can see from this figure, the numerical and analytical
results practically coincide, as in the case shown in Fig. 5. Both these results predict monotonic divergent trajectories.
This agrees with the results of the analysis presented in Section 4 (see Zone 3 in Fig. 1). Note that for larger τ
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the trajectories predicted by the numerical solution eventually converge to a certain Xlim, but this effect cannot be
predicted by the simple solutions described in Section 4.

6. Non-Stokesian trajectories

In the following analysis it will be assumed that the inertial and added-mass forces can be ignored not only for the
Stokesian trajectories, but also in the general case of non-Stokesian trajectories. In this case, Eq. (13) can be applied
for the analysis of non-Stokesian trajectories if Stokes number St is replaced by the equivalent Stokes number Steq
defined as:

Steq = 8ρpωRp

3CDρg|vg − vp| , (41)

where the drag coefficient CD is estimated as [30] CD = 24/Rep when Rep � 2 (Stokesian flow),

CD = 24

Rep

[
1 + 0.15Re0.687

p

]
when 2 < Rep < 500 (Allen flow), and CD = 0.44 when Rep � 500 (Newton flow). In the case when Rep � 2,
Steq = St.

Remembering the definition of Steq we can see that in the case of non-Stokesian flow, Steq is a complicated function
of droplet velocity. This makes Eq. (13) strongly non-linear. Let us rewrite Eq. (13) for non-Stokesian trajectories in
the form of the system of equations:

Ẋ = Y ≡ P(X,Y )

Ẏ = −Y+a−b sinX
Steq(Y )

≡ Q(X,Y )

}
, (42)

where Y ≡ Up is the dimensionless droplet velocity in the wave frame of reference, it is explicitly indicated that
Steq is a function of Y (see Eq. (41)), a = Ua − 1, b = Ub . Without loss of generality we assume that a, b and Steq
are positive. System (42) can be analysed using the conventional technique described in a number of well known
textbooks (e.g. [31,32]). The details are given in Appendix B. The general analysis of Eq. (13) with St replaced by
Steq is possible only using numerical methods. Some results of the numerical analysis of this equation are presented
below.

As in the case of Section 5, for the numerical solution of Eq. (13) with St = Steq defined by Eq. (41), the fourth
order Runge–Kutta method was used [29]. The plots of X versus τ for Va = 60 m/s, Vb = 20 m/s, Vw = 50 m/s
(β = 0.5) and Rp = 10 µm are presented in Fig. 7 (solid curves). ω and k are taken equal to 105 rad/s and 2000 rad/m
respectively. The dynamic viscosity of the ambient gas, gas and particle densities are the same as in Section 5. Six
values of the initial particle positions X0 were considered: 0, 1, 2, 3, 4 and 5.

As one can see from this figure, the trajectories for X0 = 0, 1 and 2 converge to Xlim = 0.52, while the trajectories
for X0 = 3, 4 and 5 converge to Xlim = 6.80. For both values of Xlim, cosXlim > 0. The fact that particle trajectories
converge at these values of Xlim was predicted by our simplified analysis of Stokesian trajectories for small St (cf.
Fig. 2) and by a more general analytical approach discussed in Appendix B. In contrast to the case shown in Fig. 2,
the trajectories in Fig. 7 (solid curves) approach to Xlim not monotonically, but with oscillations. These oscillations
have some similarities with the ones shown in Fig. 5 for fixed St. In the general case, these equilibria are expected to
be foci, as discussed in Appendix B.

In Fig. 8 the same trajectories as in Fig. 7 are shown but in the (X–Up) plane. The initial moments of time τ = 0
(when X(τ = 0) = X0) and time τ = 10 for the relevant trajectories are indicated on the figure. Numbers near the
points corresponding to τ = 10 show the values of X0 of the trajectories. As in the case of Fig. 7, the oscillatory
convergence of trajectories to Xlim can be clearly seen. Note that at the convergence points, where grouping takes
place, Up = 0. The fact that both equilibrium points are foci is more clearly seen in this figure than in Fig. 7.

The plots Rep versus τ for X0 = 0 and 2 are shown in Fig. 9(a) for the same parameters as in Figs. 7–8. As can
be seen in Fig. 9(a), in most cases Rep is well above 2, and the flow is expected to be non-Stokesian. For large τ ,
Rep → 0. This is expected for the points where grouping takes place.

The dashed plots of X versus τ shown in Fig. 7 refer to the same parameters as the solid plots, but for ω and k equal
to 102 rad/s and 20 rad/m respectively. In this case, the value of wave phase velocity is expected to be the same as



S. Sazhin et al. / European Journal of Mechanics B/Fluids 27 (2008) 131–149 143
Fig. 7. The solid plots refer to X versus τ for Va = 60 m/s,
Vb = 20 m/s, Vw = 50 m/s (β = 0.5), Rp = 10 µm. ω and k are taken
equal to 105 rad/s and 2000 rad/m respectively. The dynamic viscosity
of the ambient gas is assumed to be equal to 3.3 × 10−5 Ns/m2. Gas
and particle densities are taken equal to 15.7 kg/m3 and 600 kg/m3

respectively. The dashed plots refer to the same parameters as above
except ω and k are taken equal to 103 rad/s and 20 rad/m respectively.

Fig. 8. The same as Fig. 7 (solid plots) but in the Up–X plane. The
initial values of X0 are indicated near the plots alongside with the se-
quential moments of time.

before, but the value of Steq is expected to be about 2 orders of magnitude less. As in the previous case, the trajectories
for X0 = 0, 1 and 2 converge to Xlim = 0.52, while the trajectories for X0 = 3, 4 and 5 converge to Xlim = 6.80.
In contrast to the previous case, however, the new trajectories in Fig. 13 approach to Xlim not with oscillations, but
monotonically (cf. Fig. 5 for fixed St). The difference between the trajectories shown in Fig. 7 is related to the above-
mentioned difference in the values of Steq. As in the case of fixed St, the character of approach of particle trajectories
to Xlim depends on Steq. If Steq is so small that 4UbSteq cosXlim < 1 one would expect monotonic trajectories. In the
opposite case when 4UbSteq cosXlim > 1 the trajectories are expected to be oscillatory. In Section 4 this was proven
for the case of fixed St and X close to Xlim. In the general case these equilibrium points correspond to stable nodes
(see Appendix B).

In Fig. 10 the same trajectories as in Fig. 7 (dashed curves) are shown but in the (X–Up) plane. The initial moments
of time τ = 0 (when X(τ = 0) = X0) and time τ = 10 for the relevant trajectories are indicated on the figure. Numbers
near the points corresponding to τ = 10 show the values of X0 of the trajectories. As can be seen from this figure,
the trajectories corresponding to X0 = 0, 1, 4 and 5 practically reach the grouping points at τ = 10, in agreement
with Fig. 7 (dashed plots). As in the case of Fig. 7 (dashed plots), the monotonic convergence of trajectories along the
X-axis to Xlim can be clearly seen. Note that at the convergence points, where grouping takes place, Up = 0, as in the
case shown in Fig. 8. The fact that the equilibrium points are stable nodes is more clearly seen in this figure than in
Fig. 7 (dashed plots).

The plots Rep versus τ for X0 = 0 and 2 are shown in Fig. 9(b) for the same parameters as in Figs. 7 (dashed curves)
and 10. As can be seen in Fig. 9(b), in most cases Rep is well above 2, and the flow is expected to be non-Stokesian.
For large τ , Rep → 0, as in the case shown in Fig. 9(a).

The plots of X versus τ for the same parameters as in Fig. 7 (solid curves), except for Va = 60 m/s and Vb =
10 m/s, are shown in Fig. 11. In this case we have β = 1. For X0 = 0 and 1 the trajectories are rather similar to those
shown in Fig. 3. These trajectories approach corresponding values of Xlim from below as predicted in Section 3 for the
case of small fixed values of St. However, for trajectories corresponding to X0 = 2, 3, 4 and 5 we can observe a new
phenomenon when grouping at Xlim = (π/2) + 2π ≈ 7.85 is unstable and the trajectory jumps to the next grouping
level Xlim = (π/2) + 4π ≈ 14.14. The likelihood of unstable equilibria in the vicinity of these equilibrium points is
discussed in Appendix B.

In Fig. 12 the same trajectories as in Fig. 11 are shown but in the (X–Up) plane. The initial moments of time τ = 0
(when X(τ = 0) = X0) and time τ = 10 for the relevant trajectories are indicated, as in Figs. 8 and 10. Numbers near
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Fig. 9. The plots of Rep versus τ for the same parameters as in Figs. 7 (solid plots) and 8 with X0 = 0 and 2 (a). The plots of Rep versus τ for the
same parameters as in Figs. 7 (dashed plots) and 10 with X0 = 0 and 2 (b). The plots of Rep versus τ for the same parameters as in Figs. 11 and 12
with X0 = 0 and 2 (c). The plots of Rep versus τ for the same parameters as in Figs. 13 and 14 with X0 = 0 and 2 (d).

Fig. 10. The same as Fig. 7 (dashed plots) but in the Up–X plane.
The initial values of X0 are indicated near the plots alongside with the
sequential moments of time.

Fig. 11. The plots of X versus τ for the same parameters as in Fig. 7
(solid plots) except for Va = 60 m/s and Vb = 10 m/s (β = 1).
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Fig. 12. The same as Fig. 11 but in the Up–X plane. The initial val-
ues of X0 are indicated near the plots alongside with the sequential
moments of time.

Fig. 13. The plots of X versus τ for the same parameters as in Fig. 7
(solid plots) except for Va = 60 m/s and Vb = 5 m/s (β = 2).

Fig. 14. The same as Fig. 13 but in the Up–X plane. The initial values of X0 are indicated near the plots alongside with the sequential moments of
time.

the points corresponding to τ = 10 show the values of X0 of the trajectories. As can be seen from this figure, only the
trajectories corresponding to X0 = 0 and 1 approach reasonably closely the grouping points at τ = 10, in agreement
with Fig. 11. As in the case of Fig. 11, the monotonic convergence of trajectories along the X-axis to Xlim can be
clearly seen.

The plots Rep versus τ for X0 = 0 and 2 are shown in Fig. 9(c) for the same trajectories as in Figs. 11–12. As can be
seen in Fig. 9(c), in most cases Rep is well above 2, and for large τ , Rep → 0, as in the cases shown in Figs. 9(a), (b).

The plots of X versus τ for the same parameters as in Fig. 7 (solid curves), except for Va = 60 m/s and Vb = 5 m/s,
are shown in Fig. 13. In this case β = 2 and no equilibrium points are expected. This agrees with the nature of
trajectories shown in Fig. 13 and the corresponding figure in the (X–Up) plane (see Fig. 14). The corresponding plots
Rep versus τ for X0 = 0 and 2 in Fig. 9(d) show that the flow in this case is non-Stokesian for most of the time.

Finally, we should mention that none of the trajectories shown in Figs. 8, 10, 12 and 14 is closed, in agreement
with Dulac’s criterion (see Appendix B).
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7. Conclusions

The general equation, describing the dynamics of spherical particles is simplified so that only the contribution of
the drag force is taken into account. It is pointed out that in the case of spherical particles moving in an oscillating
Stokesian flow this approximation can be justified when the host gas density is much less than the particle density
and the Stokes number is not too large. In this case the contribution of inertial and added-mass forces can be ignored.
This equation has been formulated in the frame of reference moving with the phase velocity of the wave and has been
simplified in two limiting cases. Firstly, the case when Stokes numbers are small has been considered. Secondly, the
analysis is focused on the case when the initial location of the particles, x0, is close to the location where the particles
are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), xlim. In both cases, the
analytical solutions of this equation have been obtained, investigated and validated against its numerical solutions. It
is pointed out that in the first case, the solution predicts three types of trajectories depending on parameter β , defined
as the ratio of the unperturbed flow velocity in the wave frame of reference and the amplitude of velocity oscillations.
For |β| < 1, the particle grouping is predicted when x = xlim = arcsin(β)λ/(2π) and cos(arcsinβ) > 0, where λ is
the wavelength. For |β| > 1, no particle grouping is predicted. For β → ∞ the average particle velocity is predicted
to be equal to the unperturbed flow velocity. For β → +1, this velocity approaches wave phase velocity. For |β| = 1
a one-sided grouping is predicted.

Three types of trajectories are predicted when x approaches xlim: monotonic approach to xlim; approach to xlim
with oscillations; and trajectories repelled from xlim. These are identified with stable nodes, stable foci and saddles.
The trajectories in the zone between stable nodes and foci are identified as stable stars. These conclusions are shown
to be valid in the general case of non-Stokesian trajectories.

Using Dulac’s criterion, it is pointed out that none of the trajectories in the position-velocity plane can be closed.
This result has been illustrated by the trajectories calculated using the numerical solution of the equation for particle
dynamics for various parameter values.
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Appendix A

For the general analysis of Solution (20) for β > 1 we assume, without loss of generality, that

β tan
X0

2
= 1. (A.1)

If this is not the case from the very beginning then a point on the particle trajectory satisfying this equation can be
chosen as the initial point.

Taking X0 satisfying Eq. (A.1), Eq. (20) can be rewritten as:

tan

[√
β2 − 1Ub(τ − τ0)

2

]
= β tan X

2 − 1√
β2 − 1

. (A.2)

The left and right-hand sides of this equation become infinitely large (+∞) simultaneously when

τ = τ0 + π(1 + 4n)

Ub

√
β2 − 1

, (A.3)

and

X = π(1 + 4n). (A.4)

In contrast to the case when |β| � 1, no grouping (X → Xlim when τ → ∞) is expected for |β| > 1. This agrees with
the result reported by [12], based on the numerical solution of Eq. (9).
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As follows from Eqs. (A.3) and (A.4), these peaks in the values of the left and right-hand sides of Eq. (A.2) occur
with the period


τ = 4π

Ub

√
β2 − 1

(A.5)

over time and the period


X = 4π (A.6)

in space.
Eqs. (A.5) and (A.6) allow us to predict the average velocity of particles in an oscillating flow given by Eq. (24).

Appendix B

Firstly, we calculate the divergence of vector (P(X,Y ),Q(X,Y )) (see Eq. (42)) with the weighting function
Steq(Y ):

D(X,Y ) = ∂(Steq(Y )P (X,Y ))

∂X
+ ∂(Steq(Y )Q(X,Y ))

∂Y
= −1, (B.1)

where we took into account that P(X,Y ) = Y and does not explicitly depend on X.
Eq. (B.1) shows that D(X,Y ) is never equal to 0. Hence, using Dulac’s criterion (see [32], page 130) we can expect

that there is no periodic orbit which lies entirely in the (X,Y ) plane. This is illustrated in Section 6 where the particle
trajectories in the (X,Y ) plane are calculated numerically.

System (42) has no equilibria for b/a < 1, which means that it has no solutions for Ẏ = Y = 0. This agrees with the
results of our previous analysis, remembering that b/a = 1/β and the condition b/a < 1 corresponds to our previous
condition β > 1.

In the case when b/a > 1 system (42) has two equilibria for X ∈ (0,2π) when

X = Xeq = arcsin(a/b). (B.2)

Since we a priori assumed that a and b are positive, we can expect that these equilibria are in the range (0,π ).
Assuming that the first equilibrium O1(Xeq1,0) is in the range (0,π/2), the location of the second equilibrium can
be found as O2(π − Xeq1,0). Remembering that b/a = 1/β , Xeq is identical to Xlim as introduced and discussed in
Section 3.

To establish the type of trajectories in the vicinity of these equilibrium points, the corresponding Jacobian matrices
need to be calculated (see Section 5.1 in [32]):

J (X,Y )|X=Xeq,Y=0 =
( ∂P (X,Y )

∂X
∂P (X,Y )

∂Y

∂Q(X,Y )
∂X

∂Q(X,Y )
∂Y

)∣∣∣∣
X=Xeq,Y=0

. (B.3)

For equilibrium O1(Xeq1,0), expression (B.3) can be simplified to:

J (X,Y )|X=Xeq1,Y=0 =
(

0 1
−√

b2 − a2/Steq(0) −1/Steq(0)

)
. (B.4)

The eigenvalues λ of this Jacobian matrix can be found from the solution of the following equation:

λ2 + 1

Steq(0)
λ +

√
b2 − a2

Steq(0)
= 0. (B.5)

The nature of trajectories in the vicinity of O1(Xeq1,0) depends on the sign of

F ≡ 1

Steq(0)2
− 4

√
b2 − a2

Steq(0)
. (B.6)

If F > 0 then both eigenvalues are real and negative and the equilibrium O1(Xeq1,0) is a stable node (see [32]).
For the case of Stokesian trajectory this result is identical to the one obtained earlier in Section 3 (see Zone 1 in Fig. 1).
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If F < 0 then both eigenvalues are complex with the same negative real part and the equilibrium O1(Xeq1,0) is
a stable focus (see [32]). For the case of Stokesian trajectory this result is identical to the one obtained earlier in
Section 3 (see Zone 2 in Fig. 1).

If F = 0 then both eigenvalues are equal and negative. In this case the equilibrium O1(Xeq1,0) is a stable star
(see [32]). This corresponds to the boundary between Zones 1 and 2 in Fig. 1.

For equilibrium O2(Xeq2,0), expression (B.3) can be simplified to:

J (X,Y )|X=Xeq2,Y=0 =
(

0 1√
b2 − a2/Steq(0) −1/Steq(0)

)
. (B.7)

The eigenvalues λ of this Jacobian matrix can be found from the solution of the following equation:

λ2 + 1

Steq(0)
λ −

√
b2 − a2

Steq(0)
= 0. (B.8)

Eq. (B.8) has one positive and one negative root. Thus, the equilibrium O2(Xeq2,0) is a saddle (see [32]). For the
case of Stokesian trajectory this result is identical to the one obtained earlier in Section 3 (see Zone 3 in Fig. 1).

In the case when b/a = 1 system (42) has one equilibrium O(π/2,0). The Jacobian matrix in this case has the
form:

J (X,Y )|X=π/2,Y=0 =
(

0 1
0 −1/Steq(0)

)
. (B.9)

The eigenvalues λ of this Jacobian matrix can be found from the solution of the following equation:

λ2 + 1

Steq(0)
λ = 0. (B.10)

Eq. (B.10) has one zero and one negative root. To establish the types of trajectories in this case, which corresponds to
β = 1, further analysis of the equation is required. In this case the contribution of non-linear terms needs to be taken
into account. This analysis is beyond the scope of this paper. As follows from the numerical analysis, discussed in
Section 6, in this case an unstable equilibrium is expected.
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